
RGBLINK(1) General Commands Manual RGBLINK(1)

NAME
rgblink — Game Boy linker

SYNOPSIS
rgblink [-dhMtVvwx] [-l linker_script] [-m map_file] [-n sym_file]

[-O overlay_file] [-o out_file] [-p pad_value] [-S spec] file . . .

DESCRIPTION
The rgblink program links RGB object files, typically created by rgbasm(1), into a single Game Boy
ROM file. The object file format is documented in rgbds(5).

ROM0 sections are placed in the first 16 KiB of the output ROM, and ROMX sections are placed in any 16
KiB “bank” except the first. If your ROM will only be 32 KiB, you can use the -t option to change this.

Similarly, WRAM0 sections are placed in the first 4 KiB of WRAM (“bank 0”), and WRAMX sections are
placed in any bank of the last 4 KiB. If your ROM doesn’t use banked WRAM, you can use the -w option
to change this.

Also, if your ROM is designed for a monochrome Game Boy, you can make sure that you don’t use any in-
compatible section by using the -d option, which implies -w but also prohibits the use of banked VRAM.

The input asmfile can be a path to a file, or - to read from standard input.

Note that options can be abbreviated as long as the abbreviation is unambiguous: --verb is
--verbose, but --ver is invalid because it could also be --version. The arguments are as follows:

-d, --dmg
Enable DMG mode. Prohibit the use of sections that doesn’t exist on a DMG, such as VRAM
bank 1. This option automatically enables -w.

-h, --help
Print help text for the program and exit.

-l linker_script, --linkerscript linker_script
Specify a linker script file that tells the linker how sections must be placed in the ROM. The attrib-
utes assigned in the linker script must be consistent with any assigned in the code. See rgblink(5)
for more information about the linker script format.

-M, --no-sym-in-map
If specified, the map file will not list symbols, only sections.

-m map_file, --map map_file
Write a map file to the given filename, listing how sections and symbols were assigned.

-n sym_file, --sym sym_file
Write a symbol file to the given filename, listing all visible labels and exported numeric constants.
Labels output their bank and address, numeric constants output their value, following this
specification: https://rgbds.gbdev.io/sym/. Several external programs can use this information, for
example to help debugging ROMs.

-O overlay_file, --overlay overlay_file
If specified, sections will be overlaid "on top" of the ROM image overlay_file: empty space
between sections will be filled by the corresponding bytes from overlay_file. This is useful
to patch an existing ROM. Note that all sections must be fixed (forced bank and address)!

-o out_file, --output out_file
Write the ROM image to the given file.

-p pad_value, --pad pad_value
When inserting padding between sections, pad with this value. The default is 0.

Debian February 2, 2025 1

RGBLINK(1) General Commands Manual RGBLINK(1)

-S spec, --scramble spec
Enables a different “scrambling” algorithm for placing sections. See “Scrambling algorithm” be-
low for an explanation and a description of spec.

-t, --tiny
Expand the ROM0 section size from 16 KiB to the full 32 KiB assigned to ROM. ROMX sections
that are fixed to a bank other than 1 become errors, other ROMX sections are treated as ROM0.
Useful for ROMs that fit in 32 KiB.

-V, --version
Print the version of the program and exit.

-v, --verbose
Verbose: enable printing more information to standard error.

-w, --wramx
Expand the WRAM0 section size from 4 KiB to the full 8 KiB assigned to WRAM. WRAMX
sections that are fixed to a bank other than 1 become errors, other WRAMX sections are treated as
WRAM0.

-x, --nopad
Disables padding the end of the final file. This option automatically enables -t. You can use this
when not not making a ROM. When making a ROM, be careful that not using this is not a replace-
ment for rgbfix(1)’s -p option!

Scrambling algorithm
The default section placement algorithm tries to minimize the number of banks used; “scrambling” instead
places sections into a given pool of banks, trying to minimize the number of sections sharing a given bank.
This is useful to catch broken bank assumptions, such as expecting two different sections to land in the
same bank (that is not guaranteed unless both are manually assigned the same bank number).

A scrambling spec is a comma-separated list of region specs. A trailing comma is allowed, as well as
whitespace between all specs and their components. Each region spec has the following form:

region[=size]
region must be one of the following (case-insensitive), while size must be a positive decimal integer
between 1 and the corresponding maximum. Certain regions allow omitting the size, in which case it de-
faults to its max value.

Region name Ta Max size Ta Size optional
romx 65535 No
sram 255 No
wramx 7 Yes

A size of 0 disables scrambling for that region.

For example, romx=64,wramx=4 will scramble ROMX sections among ROM banks 1 to 64, WRAMX sec-
tions among RAM banks 1 to 4, and will not scramble SRAM sections.

Later region specs override earlier ones; for example, romx=42, Romx=0 disables scrambling for romx.

wramx scrambling is silently ignored if -w is passed (including if implied by -d), as WRAMX sections will
be treated as WRAM0.

EXAMPLES
All you need for a basic ROM is an object file, which can be made into a ROM image like so:

$ rgblink -o bar.gb foo.o

The resulting bar.gb will not have correct checksums (unless you put them in the assembly source). You
should use rgbfix(1) to fix these so that the program will actually run in a Game Boy:

$ rgbfix -v bar.gb

Debian February 2, 2025 2

RGBLINK(1) General Commands Manual RGBLINK(1)

Here is a more complete example:

$ rgblink -o bin/game.gb -n bin/game.sym -p 0xFF obj/title.o
obj/engine.o

BUGS
Please report bugs on GitHub: https://github.com/gbdev/rgbds/issues.

SEE ALSO
rgbasm(1), rgblink(5), rgbfix(1), rgbgfx(1), gbz80(7), rgbds(5), rgbds(7)

HISTORY
rgblink was originally written by Carsten Sørensen as part of the ASMotor package, and was later
repackaged in RGBDS by Justin Lloyd. It is now maintained by a number of contributors at
https://github.com/gbdev/rgbds.

Debian February 2, 2025 3

	RGBLINK(1)
	Name
	Synopsis
	Description
	Scrambling algorithm

	Examples
	Bugs
	See also
	History

