
RGBGFX(1) General Commands Manual RGBGFX(1)

NAME
rgbgfx — Game Boy graphics converter

SYNOPSIS
rgbgfx [-CmhOuVwXYZ] [-v [-v . . .]] [-a attrmap | -A] [-b base_ids]

[-c pal_spec] [--color when] [-d depth] [-i input_tiles] [-L slice]
[-l base_pal] [-N nb_tiles] [-n nb_pals] [-o out_file]
[-p pal_file | -P] [-q pal_map | -Q] [-r width] [-s nb_colors]
[-t tilemap | -T] [-W warning] [-x quantity] file

DESCRIPTION
The rgbgfx program converts PNG images into data suitable for display on the Game Boy and Game Boy
Color, or vice-versa.

The main function of rgbgfx is to divide the input PNG into 8×8 pixel squares, convert each of those
squares into 1bpp or 2bpp tile data, and save all of the tile data in a file. It also has options to generate a tile
map, attribute map, and/or palette set as well; more on that and how the conversion process can be tweaked
below.

ARGUMENTS
rgbgfx accepts the usual short and long options, such as -V and --version. Options later in the com-
mand line override those set earlier, except for when duplicate options are considered an error. Options can
be abbreviated as long as the abbreviation is unambiguous: --verb is --verbose, but --ver is in-
valid because it could also be --version.

Unless otherwise noted, passing ‘-’ (a single dash) as a file name makes rgbgfx use standard input (for
input files) or standard output (for output files). To suppress this behavior, and open a file in the current di-
rectory actually called ‘-’, pass ./- instead. Using standard input or output for more than one file in a sin-
gle command may produce unexpected results.

rgbgfx accepts decimal, hexadecimal, octal, and binary for numeric option arguments. Decimal numbers
are written as usual; hexadecimal numbers must be prefixed with either ‘$’ or ‘0x’; octal numbers must be
prefixed with either ‘&’ or ‘0o’; and binary numbers must be prefixed with either ‘%’ or ‘0b’. (The pre-
fixes ‘$’ and ‘&’ will likely need escaping or quoting to avoid being interpreted by the shell.) Leading ze-
ros (after the base prefix, if any) are accepted, and letters are not case-sensitive. For example, all of these
are equivalent: ‘42’, 042, 0x2A, 0X2A, 0x2a, &52, 0o52, 0O052, 0b00101010, 0B101010.

The following options are accepted:

-a attrmap, --attr-map attrmap
Generate an attribute map, which is a file containing tile “attributes”. For each square of the input
image, its corresponding attribute map byte contains the mirroring bits (if -m was specified), the
bank bit (see -N), and the palette index. See Pan Docs: https://gbdev.io/pandocs/Tile_Maps#bg-
map-attributes-cgb-mode-only for the individual bytes’ format. The output is written just like the
tile map (see -t), follows the same order (-Z), and has the same size.

-A, --auto-attr-map
Same as -a base_path.attrmap (see “Automatic output paths”).

-B color, --background-color color
Set a background color to be omitted from output. Colors are accepted in #rgb or #rrggbb for-
mat, or as transparent. Input tiles which are entirely the specified background color are ig-
nored and will not be output in tile data file. The tilemap, atrribute map, or palette map files will
use placeholder values where background tiles were. If a background color is specified, it cannot
be used within tiles which are not ignored.

-b base_ids, --base-tiles base_ids
Set the base IDs for tile map output. base_ids should be one or two numbers between 0 and
255, separated by a comma; they are for bank 0 and bank 1 respectively. Both default to 0.

Debian September 30, 2025 1

RGBGFX(1) General Commands Manual RGBGFX(1)

-C, --color-curve
When generating palettes, use a color curve mimicking the Game Boy Color’s screen. The result-
ing colors may look closer to the input image’s on hardware and accurate emulators.

-c pal_spec, --colors pal_spec
Use the specified color palettes instead of having rgbgfx automatically determine some.
pal_spec can be one of the following:

inline palette spec
If pal_spec begins with a hash character ‘#’, it is treated as an inline palette specifica-
tion. It should contain a comma-separated list of hexadecimal colors, each beginning with
a hash. Colors are accepted in #rgb or #rrggbb format. To leave one or more gaps in
the palette, #none can be used instead of any color. Palettes must be separated by a
colon or semicolon (the latter may require quoting to avoid special handling by the shell),
and spaces are allowed around colons, semicolons and commas; trailing commas and
semicolons are allowed. See “EXAMPLES” for an example of an inline palette specifica-
tion.

embedded palette spec
If pal_spec is the case-insensitive word embedded, then the first four colors of the in-
put PNG’s embedded palette are used. It is an error if the PNG is not indexed, or if colors
other than these 4 are used. (This is different from the default behavior of indexed PNGs,
as then unused entries in the embedded palette are ignored, whereas they are not with -c
embedded).

DMG palette spec
If pal_spec starts with case-insensitive dmg=, then the following two-digit hexadeci-
mal number specifies four grayscale DMG color indexes. The number functions like the
DMG’s $FF47 BGP register (see Pan Docs: https://gbdev.io/pandocs/Palettes.html for
more information): the low two bits 0-1 specify which gray shade goes in color index 0,
the next two bits 2-3 specify which gray shade goes in color index 1, and so on. Gray
shade 0 is the lightest (white), 3 is the darkest (black). If pal_spec is the case-insensi-
tive word dmg, then it acts like dmg=E4, i.e. the darkest gray will end up in color index 0,
and so on. The same gray shade cannot go in two color indexes. To specify a DMG
palette, the input PNG must have all its colors in shades of gray, without any transparent
colors.

automatic palette generation
If pal_spec is the case-insensitive word auto, then a palette is automatically generated
using the procedure described in “PALETTE GENERATION”. This is the default behav-
ior if -c was not specified.

external palette spec
Otherwise, pal_spec is assumed to be an external palette specification. The expected
format is format:path, where path is a path to a file (- is not treated specially),
which will be processed according to the format. See “PALETTE SPECIFICATION
FORMATS” for a list of formats and their descriptions.

--color when
Specify when to highlight warning and error messages with color: always, never, or auto.
auto determines whether to use colors based on the NO_COLOR: https://no-color.org/ or
FORCE_COLOR: https://force-color.org/ environment variables, or whether the output is to a TTY.

-d depth, --depth depth
Set the bit depth of the output tile data, in bits per pixel (bpp), either 1 or 2 (the default). This
changes how tile data is output, and the maximum number of colors per palette (2 and 4 respec-
tively).

Debian September 30, 2025 2

RGBGFX(1) General Commands Manual RGBGFX(1)

-h, --help
Print help text for the program and exit.

-i input_tiles, --input-tileset input_tiles
Use the specified input tiles in addition to having rgbgfx automatically determine some. The in-
put tiles will always be first in the -o image output, and will always get the first IDs in the -t
tilemap output. input_tiles must contain 1bpp or 2bpp tile data (whichever matches the -d
option used here), as could be previously generated with the -o option.

If the -o option is also specified, then the input tiles will be assigned the first tile IDs, and any
tiles from the input image that are not in the input tileset will be assigned subsequent IDs. But if
the -o option is not specified, then the tile map can only use tiles from the input tileset. Using -o
with -i is useful if you want to precisely control the tile IDs of its tile map. Using -i alone is
more useful if you want several images to use a subset of shared tiles.

If the image will use more than one color palette, it is strongly advised to generate the palette set
along with the input tile data, and pass -c gbc:input_palette along with -i
input_tiles. This is because rgbgfx might not generate the same palette set for this image
as it did for its input tileset.

See “EXAMPLES” for examples of how to use this option.

This option is ignored in “REVERSE MODE”.

-L slice, --slice slice
Only process a given rectangle of the image. This is useful for example if the input image is a
sheet of some sort, and you want to convert each cel individually. The default is to process the
whole image as-is.

slice must be two number pairs, separated by a colon. The numbers must be separated by com-
mas; space is allowed around all punctuation. The first number pair specifies the X and Y coordi-
nates of the top-left pixel that will be processed (anything above it or to its left will be ignored).
The second number pair specifies how many tiles to process horizontally and vertically, respec-
tively.

-L is ignored in reverse mode, no padding is inserted.

-l base_pal, --base-palette base_pal
Set the base ID for attribute map and palette map output. base_pal should be a number between
0 and 255. It defaults to 0.

-m, --mirror-tiles
Deduplicate tiles that are horizontally and/or vertically symmetrical mirror images of each other.
Only one of each unique tile will be saved in the tile data file, with mirror images counting as du-
plicates. Useful with a tile map and attribute map together (see -a and -t) to keep track of the
duplicated tiles and the dimension(s) mirrored. Implies -u. Equivalent to -XY.

-N nb_tiles, --nb-tiles nb_tiles
Set a maximum number of tiles that can be placed in each VRAM bank. nb_tiles should be
one or two numbers between 0 and 256, separated by a comma; if the latter is omitted, it defaults
to 0. Setting either number to 0 prevents any tiles from being output in that bank.

If more tiles are generated than can fit in the two banks combined, rgbgfx will abort. If -N is
not specified, no limit will be set on the amount of tiles placed in bank 0, and tiles will not be
placed in bank 1.

-n nb_pals, --nb-palettes nb_pals
Abort if more than nb_pals palettes are generated. This may not be more than 256.

Note that attribute map output only has 3 bits for the palette ID, so a limit higher than 8 may yield
incomplete data unless relying on a palette map (see -q).

Debian September 30, 2025 3

RGBGFX(1) General Commands Manual RGBGFX(1)

-O, --group-outputs
Sets the ‘base path’ to be the output tile data path from -o instead of the input image path (see
“Automatic output paths”).

-o out_file, --output out_file
Output the tile data in native 2bpp format or in 1bpp (depending on -d) to this file.

-p pal_file, --palette pal_file
Output the image’s palette set to this file.

-P, --auto-palette
Same as -p base_path.pal (see “Automatic output paths”).

-q pal_map, --palette-map pal_map
Output the image’s palette map to this file. This is useful if the input image contains more than 8
palettes, as the attribute map only contains the lower 3 bits of the palette indices.

-Q, --auto-palette-map
Same as -q base_path.palmap (see “Automatic output paths”).

-r width, --reverse width
Switches rgbgfx into “reverse” mode. In this mode, instead of converting a PNG image into
Game Boy data, rgbgfx will attempt to reverse the process, and render Game Boy data into an
image. See “REVERSE MODE” below for details.

width is the width of the image to generate, in tiles. -r -0 chooses a width to make the image
as square as possible. This is useful if you do not know the original width.

-s nb_colors, --palette-size nb_colors
Specify how many colors each palette contains, including the transparent one if any. nb_colors
cannot be more than 1 << depth (see -d).

-t tilemap, --tilemap tilemap
Generate a file of tile indices. For each square of the input image, its corresponding tile map byte
contains the index of the associated tile in the tile data file. The IDs wrap around from 255 back to
0, and do not include the bank bit; use -a for that. Useful in combination with -u and/or -m to
keep track of duplicate tiles.

-T, --auto-tilemap
Same as -t base_path.tilemap (see “Automatic output paths”).

-u, --unique-tiles
Deduplicate identical tiles. Only one of each unique tile will be saved in the tile data file. Useful
with a tile map (see -t) to keep track of the duplicated tiles.

Note that if this option is enabled, no guarantee is made on the order in which tiles are output;
while it should be consistent across identical runs of a given rgbgfx release, the same is not true
for different releases.

-V, --version
Print the version of the program and exit.

-v, --verbose
Be verbose. The verbosity level is increased by one each time the flag is specified, with each level
including the previous:
1. Print the rgbgfx configuration before taking actions.
2. Print a notice before significant actions.
3. Print some of the actions’ intermediate results.
4. Print some internal debug information.

Debian September 30, 2025 4

RGBGFX(1) General Commands Manual RGBGFX(1)

5. Print detailed internal information.
The verbosity level does not go past 6.

Note that verbose output is only intended to be consumed by humans, and may change without no-
tice between RGBDS releases; relying on those for scripts is not advised.

-W warning, --warning warning
Set warning flag warning. A warning message will be printed if warning is an unknown warn-
ing flag. See the “DIAGNOSTICS” section for a list of warnings.

-w Disable all warning output, even when turned into errors.

-X, --mirror-x
Deduplicate tiles that are horizontally symmetrical mirror images of each other across the X axis.
Implies -u.

-x quantity, --trim-end quantity
Do not output the last quantity tiles to the tile data file; no other output is affected. This is use-
ful for trimming “filler” / blank squares at the end of an image. If fewer than quantity tiles
would have been emitted, the file will be empty.

Note that this is done after deduplication if -u was enabled, so you probably don’t want to use
this option in combination with -u. Note also that the tiles that don’t get output will not count to-
wards -N’s limit.

-Y, --mirror-y
Deduplicate tiles that are vertically symmetrical mirror images of each other across the Y axis.
Implies -u.

-Z, --columns
Read squares from the PNG in column-major order (column by column), instead of the default
row-major order (line by line). This primarily affects tile map and attribute map output, although
it may also change generated tile data and palettes.

@at_file
Read more options and arguments from a file, as if its contents were given on the command line.
Arguments are separated by whitespace or newlines. Lines starting with a hash sign (‘#’) are con-
sidered comments and ignored.

No shell processing is performed, such as wildcard or variable expansion. There is no support for
escaping or quoting whitespace to be included in arguments. The standard ‘--’ to stop option pro-
cessing also disables at-file processing. Note that while ‘--’ can be used inside an at-file, it only
disables option processing within that at-file, and processing continues in the parent scope.

See “At-files” below for an explanation of how this can be useful.

At-files
In a given project, many images are to be converted with different flags. The traditional way of solving this
problem has been to specify the different flags for each image in the Makefile or build script; this can be in-
convenient, as it centralizes all those flags away from the images they concern.

To avoid these drawbacks, you can use “at-files”: any command-line argument that begins with an at sign
(‘@’) is interpreted as one, as documented above. At-files can be stored right next to the corresponding im-
age, for example:

$ rgbgfx -o image.2bpp -t image.tilemap @image.flags image.png

This will read additional flags from the file image.flags, which could contain, for example, -b 128 to
specify a base offset for the image’s tiles. The above command could be generated from the following
make(1) rule:

Debian September 30, 2025 5

RGBGFX(1) General Commands Manual RGBGFX(1)

%.2bpp %.tilemap: %.flags %.png
rgbgfx -o $∗.2bpp -t $∗.tilemap @$∗.flags $∗.png

PALETTE SPECIFICATION FORMATS
The following formats are supported:

act Adobe Photoshop color table: https://www.adobe.com/devnet-
apps/photoshop/fileformatashtml/#50577411_pgfId-1070626.

aco Adobe Photoshop color swatch: https://www.adobe.com/devnet-
apps/photoshop/fileformatashtml/#50577411_pgfId-1055819.

gbc A GBC palette memory dump, as emitted by rgbgfx -p. Useful to force several images to share
the same palette.

gpl GIMP palette: https://docs.gimp.org/2.10/en/gimp-concepts-palettes.html.

hex Plaintext lines of hexadecimal colors in rrggbb format.

png An image of square color swatches, with each row defining the colors for one palette. Color
swatches can be any square size.

psp Paint Shop Pro palette: https://www.selapa.net/swatches/colors/fileformats.php#psp_pal.

If you wish for another format to be supported, please open an issue (see “BUGS” below) or contact us, and
supply a few sample files.

PALETTE GENERATION
rgbgfx must generate palettes from the colors in the input image, unless -c was used; in that case, the
provided palettes will be used. If the order of colors in the palettes is important to you, for example be-
cause you want to use palette swaps, please use -c to specify the palette explicitly.

First, if the image contains any transparent pixel, color #0 of all palettes will be allocated to it. This is done
even if palettes were explicitly specified using -c; then the specification only covers color #1 onwards.
(If you do not want this, ask your image editor to remove the alpha channel.)

After generating palettes, rgbgfx sorts colors within those palettes using the following rules: delim $$

• If the PNG file internally contains a palette (often dubbed an “indexed” PNG), then colors in
each output palette will be sorted according to their order in the PNG’s palette. Any unused en-
tries will be ignored, and only the first entry is considered if there are any duplicates. (If you
want a given color to appear more than once, or an unused color to appear at all, you should
specify the palettes explicitly instead using -c; -c embedded may be appropriate.)

• Otherwise, if the PNG only contains shades of gray, they will be categorized into as many
“bins” as there are colors per palette, and the palette is set to these bins. The darkest gray will
end up in bin #0, and so on; note that this is the opposite of the RGB method below. This is
equivalent to having specified a DMG palette of -c dmg=E4. If two distinct grays end up in
the same bin, the RGB method is used instead.

Be careful that rgbgfx is picky about what it considers “grays”: the red, green, and blue com-
ponents of each color must all be exactly the same.

• If none of the above apply, colors are sorted from lightest (first) to darkest (last). The definition
of luminance that rgbgfx uses is “$2126 times red + 7152 times green + 722 times blue$”.

delim off

Note that the “indexed” behavior depends on an internal detail of how the PNG is saved, specifically its
PLTE chunk. Since few image editors (such as GIMP) expose that detail, this behavior is only kept for
compatibility and should be considered deprecated.

It turns out that palette generation is an NP-complete problem known as "pagination", so rgbgfx does not
attempt to find the optimal solution, but instead uses an "overload-and-remove" heuristic to find a good one
in a reasonable amount of time. (There are no guarantees about how this algorithm will generate palettes,

Debian September 30, 2025 6

RGBGFX(1) General Commands Manual RGBGFX(1)

apart from the constraints documented above.) It is possible to compute the optimal solution externally (us-
ing a solver, for example), and then provide it to rgbgfx via -c.

OUTPUT FILES
All files output by rgbgfx are binary files, and designed to follow the Game Boy and Game Boy Color’s
native formats. What follows is succinct descriptions of those formats, including rgbgfx-specific details.
For more complete, beginner-friendly descriptions of the native formats with illustrations, please check out
Pan Docs: https://gbdev.io/pandocs/Graphics.

Tile data
Tile data is output like a binary dump of VRAM, with no padding between tiles. Each tile is 16 bytes, 2 per
row of 8 pixels; the bits of color IDs are split into each byte (or “bitplane”). The leftmost pixel’s color ID is
stored in the two bytes’ most significant bits, and the rightmost pixel’s color ID in their least significant
bits.

When the bit depth (-d) is set to 1, the most significant bitplane (second byte) of each row, being all zeros,
is simply not output.

Palette data
Palette data is output like a dump of palette memory. Each color is written as GBC-native little-endian
RGB555, with the unused bit 15 set to 0. There is no padding between colors, nor between palettes; how-
ever, empty colors in the palettes are output as 0xFFFF. delim $$ For example, if 5 palettes are generated
with -s 4, the palette data file will be $2 times 4 times 5 = 40$ bytes long, even if some palettes contain
less than 3 colors. delim off Note that -n only caps how many palettes are generated (and thus this file’s
size), but fewer may be generated still.

Tile map data
A tile map is an array of tile IDs, with one byte per tile ID. The first byte always corresponds to the ID of
the tile in top-left corner of the input image; the second byte is either the ID of the tile to its right (by de-
fault), or below it (with -Z); and so on, continuing in the same direction. Rows / columns (respectively)
are stored consecutively, with no padding.

Attribute map data
Attribute maps mirror the format of tile maps, like on the GBC, especially the order in which bytes are out-
put. The contents of individual bytes follows the GBC’s native format:

Bit 7 BG-to-OAM Priority Set to 0
Bit 6 Vertical Flip 0=Normal, 1=Mirror vertically
Bit 5 Horizontal Flip 0=Normal, 1=Mirror horizontally
Bit 4 Not used Set to 0
Bit 3 Tile VRAM Bank number 0=Bank 0, 1=Bank 1
Bit 2–0 Background Palette number BGP0-7

Note that if more than 8 palettes are used, only the lowest 3 bits of the palette ID are output.

Automatic output paths
For convenience, rgbgfx provides shortcuts to generate all files in the same directory. This is done by us-
ing the uppercase version of a flag (for example, -A instead of -a). The base_path is the input image
path (or the output tile data path from -o, if -O was given) with its extension, if any, removed.

For example, these two commands are equivalent:

$ rgbgfx img/player.png -o build/player.2bpp -P
$ rgbgfx img/player.png -o build/player.2bpp -p img/player.pal

And so are these two:

$ rgbgfx img/player.png -o build/player.2bpp -O -P
$ rgbgfx img/player.png -o build/player.2bpp -p build/player.pal

Debian September 30, 2025 7

RGBGFX(1) General Commands Manual RGBGFX(1)

REVERSE MODE
rgbgfx can produce a PNG image from valid data. This may be useful for ripping graphics, recovering
lost source images, etc. An important caveat on that last one, though: the conversion process is lossy both
ways, so the “reversed” image won’t be perfectly identical to the original—but it should be close to a Game
Boy’s output. (Keep in mind that many of consoles output different colors, so there is no true reference
rendering.)

When using reverse mode, make sure to pass the same flags that were given when generating the data, espe-
cially -C, -d, -N, -s, -x, and -Z. ““At-files” may help with this”. rgbgfx will warn about any
inconsistencies it detects.

Files that are normally outputs (-a, -p, -t) become inputs, and file will be written to instead of read
from, and thus needs not exist beforehand. Any of these inputs not passed is assumed to be some default:

palettes Unspecified palette data makes rgbgfx assume DMG (monochrome Game Boy) mode: a
single palette of 4 grays. It is possible to pass palettes using -c instead of -p.

tile data Tile data must be provided, as there is no reasonable assumption to fall back on.
tile map A missing tile map makes rgbgfx assume that tiles were not deduplicated, and should be

laid out in the order they are stored.
attribute map Without an attribute map, rgbgfx assumes that no tiles were mirrored.

DIAGNOSTICS
Warnings are diagnostic messages that indicate possibly erroneous behavior that does not necessarily com-
promise the conversion process. The following options alter the way warnings are processed.

-Werror
Make all warnings into errors. This can be negated as -Wno-error to prevent turning all warn-
ings into errors.

-Werror=
Make the specified warning or meta warning into an error. A warning’s name is appended
(example: -Werror=obsolete), and this warning is implicitly enabled and turned into an er-
ror. This can be negated as -Wno-error= to prevent turning a specified warning into an error,
even if -Werror is in effect.

The following warnings are “meta” warnings, that enable a collection of other warnings. If a specific warn-
ing is toggled via a meta flag and a specific one, the more specific one takes priority. The position on the
command-line acts as a tie breaker, the last one taking effect.

-Wall
This enables warnings that are likely to indicate an error or undesired behavior, and that can easily
be fixed.

-Weverything
Enables literally every warning.

The following warnings are actual warning flags; with each description, the corresponding warning flag is
included. Note that each of these flags also has a negation (for example, -Wobsolete enables the warn-
ing that -Wno-obsolete disables; and -Wall enables every warning that -Wno-all disables). Only
the non-default flag is listed here. Ignoring the “no-” prefix, entries are listed alphabetically.

-Wembedded
Warn when a generated palette is sorted according to the input PNG’s embedded palette but -c
embedded was not provided. This warning is enabled by -Weverything.

-Wno-obsolete
Warn when obsolete features are encountered, which have been deprecated and may later be re-
moved.

Debian September 30, 2025 8

RGBGFX(1) General Commands Manual RGBGFX(1)

-Wtrim-nonempty
Warn when -x trims a nonempty tile. An "empty" tile uses entirely color 0 of its palette. This
warning is enabled by -Wall.

EXAMPLES
The following will only validate the tileset.png image (check its size, that all tiles have a suitable
amount of colors, etc.), but output nothing:

$ rgbgfx src/res/maps/overworld/tileset.png

The following will convert the tileset.png image using the two given palettes (and only those), and
store the generated 2bpp tile data in tileset.2bpp, and the attribute map in tileset.attrmap.

$ rgbgfx -c ’#ffffff,#8d05de, #dc7905,#000000; #fff,#8d05de,
#7e0000 , #000’ -A -o tileset.2bpp tileset.png

The following will deduplicate the tiles in the title_screen.png image, keeping only one of each
unique tile, and store the generated 2bpp tile data in title_screen.2bpp, and the tile map in
title_screen.tilemap.

$ rgbgfx -u title_screen.png -o title_screen.2bpp -t
title_screen.tilemap

The following will convert the given inline palette specification to a palette set, and store the palette set in
colors.pal, without needing an input image.

$ rgbgfx -c ’#fff,#ff0,#f80,#000’ -p colors.pal

The following will convert two level images using the same tileset, and error out if any of them contain tiles
not in the tileset.

$ rgbgfx tileset.png -o tileset.2bpp -O -P
$ rgbgfx level1.png -i tileset.2bpp -c gbc:tileset.pal -t level1.tilemap -a level1.attrmap
$ rgbgfx level2.png -i tileset.2bpp -c gbc:tileset.pal -t level2.tilemap -a level2.attrmap

BUGS
Please report bugs or mistakes in this documentation on GitHub: https://github.com/gbdev/rgbds/issues.

SEE ALSO
rgbasm(1), rgblink(1), rgbfix(1), rgbds(7)

The Game Boy hardware reference Pan Docs: https://gbdev.io/pandocs/Graphics, particularly the section
about graphics.

HISTORY
rgbgfx was originally written by stag019 as a program to be packaged in RGBDS. It was later rewritten
by ISSOtm, and is now maintained by a number of contributors at https://github.com/gbdev/rgbds.

Debian September 30, 2025 9

	RGBGFX(1)
	Name
	Synopsis
	Description
	Arguments
	At-files

	Palette specification formats
	Palette generation
	Output files
	Tile data
	Palette data
	Tile map data
	Attribute map data
	Automatic output paths

	Reverse mode
	Diagnostics
	Examples
	Bugs
	See also
	History

