
RGBDS(5) File Formats Manual RGBDS(5)

NAME
rgbds — object file format documentation

DESCRIPTION
This is the description of the object files used by rgbasm(1) and rgblink(1). Please note that the
specification is not stable yet. RGBDS is still in active development, and some new features require adding
more information to the object file, or modifying some fields, both of which break compatibility with older
versions.

FILE STRUCTURE
The following types are used:

LONG is a 32-bit integer stored in little-endian format. BYTE is an 8-bit integer. STRING is a 0-terminated
string of BYTE. Brackets after a type (e.g. LONG[n]) indicate n consecutive elements (here, LONGs). All
items are contiguous, with no padding anywhere—this also means that they may not be aligned in the file!

REPT n indicates that the fields between the REPT and corresponding ENDR are repeated n times.

All IDs refer to objects within the file; for example, symbol ID $0001 refers to the second symbol defined
in this object file’s “Symbols” array. The only exception is the “Source file info” nodes, whose IDs are
backwards, i.e. source node ID $0000 refers to the last node in the array, not the first one. References to
other object files are made by imports (symbols), by name (sections), etc.—but never by ID.

Header
BYTE Magic[4]

"RGB9"
LONG RevisionNumber

The format’s revision number this file uses. (This is always in the same place in all revisions.)
LONG NumberOfSymbols

How many symbols are defined in this object file.
LONG NumberOfSections

How many sections are defined in this object file.

Source file info
LONG NumberOfNodes

The number of source context nodes contained in this file.
REPT NumberOfNodes

LONG ParentID
ID of the parent node, -1 meaning that this is the root node.

Important: the nodes are actually written in reverse order, meaning the node with ID 0 is
the last one in the list!

LONG ParentLineNo
Line at which the parent node’s context was exited; meaningless for the root node.

BYTE Type
Value Meaning
0 REPT node
1 File node
2 Macro node

IF Type ≠ 0
If the node is not a REPT node...

STRING Name
The node’s name: either a file name, or the macro’s name prefixes by its defini-
tion’s file name (e.g. src/includes/defines.asm::error).

ELSE If the node is a REPT, it also contains the iteration counter of all parent REPTs.

LONG Depth

Debian February 2, 2025 1

RGBDS(5) File Formats Manual RGBDS(5)

LONG Iter[Depth]
The number of REPT iterations, by increasing depth.

ENDC
ENDR

Symbols
REPT NumberOfSymbols

STRING Name
This symbol’s name. Local symbols are stored as their full name (Scope.symbol).

BYTE Type
Value Meaning
0 Local symbol only used in this file.
1 Import of an exported symbol (by name) from another object file.
2 Exported symbol visible from other object files.

IF Type ≠ 1
If the symbol is defined in this object file...

LONG NodeID
Context in which the symbol was defined.

LONG LineNo
Line number in the context at which the symbol was defined.

LONG SectionID
The ID of the section in which the symbol is defined. If the symbol doesn’t be-
long to any specific section (i.e. it’s a constant), this field contains -1.

LONG Value
The symbol’s value. If the symbol belongs to a section, this is the offset within
that symbol’s section.

ENDC
ENDR

Sections
REPT NumberOfSections

STRING Name
The section’s name.

LONG NodeID
Context in which the section was defined.

LONG LineNo
Line number in the context at which the section was defined.

LONG Size
The section’s size, in bytes.

BYTE Type
Bits 0–2 indicate the section’s type:
Value Meaning
0 WRAM0
1 VRAM
2 ROMX
3 ROM0
4 HRAM
5 WRAMX
6 SRAM
7 OAM

Bit 7 being set means that the section is a "union" (see “Unionized sections” in
rgbasm(5)). Bit 6 being set means that the section is a "fragment" (see “Section
fragments” in rgbasm(5)). These two bits are mutually exclusive.

Debian February 2, 2025 2

RGBDS(5) File Formats Manual RGBDS(5)

LONG Address
Address this section must be placed at. This must either be valid for the section’s Type
(as affected by flags like -t or -d in rgblink(1)), or -1 to indicate that the linker should
automatically decide (the section is “floating”).

LONG Bank
ID of the bank this section must be placed in. This must either be valid for the section’s
Type (with the same caveats as for the Address), or -1 to indicate that the linker should
automatically decide.

BYTE Alignment
How many bits of the section’s address should be equal to AlignOfs, starting from the
least-significant bit.

LONG AlignOfs
Alignment offset. Must be strictly less than 1 << Alignment.

IF Type = 2 || Type = 3
If the section has ROM type, it contains data.

BYTE Data[Size]
The section’s raw data. Bytes that will be patched over must be present, even
though their contents will be overwritten.

LONG NumberOfPatches
How many patches must be applied to this section’s Data.

REPT NumberOfPatches
LONG NodeID

Context in which the patch was defined.
LONG LineNo

Line number in the context at which the patch was defined.
LONG Offset

Offset within the section’s Data at which the patch should be applied.
Must not be greater than the section’s Size minus the patch’s size (see
Type below).

LONG PCSectionID
ID of the section in which PC is located. (This is usually the same sec-
tion within which the patch is applied, except for e.g. LOAD blocks, see
“RAM code” in rgbasm(5).)

LONG PCOffset
Offset of the PC symbol within the section designated by
PCSectionID. It is expected that PC points to the instruction’s first
byte for instruction operands (i.e. jp @ must be an infinite loop), and to
the patch’s first byte otherwise (db, ‘dw’, ‘dl’).

BYTE Type
Value Meaning
0 Single-byte patch
1 Little-endian two-byte patch
2 Little-endian four-byte patch
3 Single-byte ‘jr’ patch; the patch’s value will be subtracted to

PC + 2 (i.e. jr @ must be the infinite loop 18 FE).
LONG RPNSize

Size of the RPNExpr below.
BYTE RPNExpr[RPNSize]

The patch’s value, encoded as a RPN expression (see “RPN
expressions”).

ENDR

Debian February 2, 2025 3

RGBDS(5) File Formats Manual RGBDS(5)

ENDC

Assertions
LONG NumberOfAssertions

How many assertions this object file contains.
REPT NumberOfAssertions

Assertions are essentially patches with a message.

LONG NodeID
Context in which the assertions was defined.

LONG LineNo
Line number in the context at which the assertion was defined.

LONG Offset
Unused leftover from the patch structure.

LONG PCSectionID
ID of the section in which PC is located.

LONG PCOffset
Offset of the PC symbol within the section designated by PCSectionID.

BYTE Type
Describes what should happen if the expression evaluates to a non-zero value.
Value Meaning
0 Print a warning message, and continue linking normally.
1 Print an error message, so linking will fail, but allow other assertions to be

evaluated.
2 Print a fatal error message, and abort immediately.

LONG RPNSize
Size of the RPNExpr below.

BYTE RPNExpr[RPNSize]
The patch’s value, encoded as a RPN expression (see “RPN expressions”).

STRING Message
The message displayed if the expression evaluates to a non-zero value. If empty, a generic
message is displayed instead.

ENDR

RPN expressions
Expressions in the object file are stored as RPN, or “Reverse Polish Notation”, which is a notation that al-
lows computing arbitrary expressions with just a simple stack. For example, the expression 2 5 - will
first push the value “2” to the stack, then “5”. The ‘-’ operator pops two arguments from the stack, sub-
tracts them, and then pushes back the result (“3”) on the stack. A well-formed RPN expression never tries
to pop from an empty stack, and leaves exactly one value in it at the end.

RGBDS encodes RPN expressions as an array of BYTEs. The first byte encodes either an operator, or a lit-
eral, which consumes more BYTEs after it:

Value Meaning
$00 Addition operator (‘+’)
$01 Subtraction operator (‘-’)
$02 Multiplication operator (‘∗’)
$03 Division operator (‘/’)
$04 Modulo operator (‘%’)
$05 Negation (unary ‘-’)
$06 Exponent operator (‘∗∗’)
$10 Bitwise OR operator (‘|’)
$11 Bitwise AND operator (‘&’)

Debian February 2, 2025 4

RGBDS(5) File Formats Manual RGBDS(5)

$12 Bitwise XOR operator (‘ˆ’)
$13 Bitwise complement operator (unary ‘˜’)
$21 Logical AND operator (‘&&’)
$22 Logical OR operator (‘||’)
$23 Logical complement operator (unary ‘!’)
$30 Equality operator (‘==’)
$31 Non-equality operator (‘!=’)
$32 Greater-than operator (‘>’)
$33 Less-than operator (‘<’)
$34 Greater-than-or-equal operator (‘>=’)
$35 Less-than-or-equal operator (‘<=’)
$40 Left shift operator (‘<<’)
$41 Arithmetic/signed right shift operator (‘>>’)
$42 Logical/unsigned right shift operator (>>>)
$50 BANK(symbol); followed by the symbol’s LONG ID.
$51 BANK(section); followed by the section’s STRING name.
$52 PC’s BANK() (i.e. BANK(@)).
$53 SIZEOF(section); followed by the section’s STRING name.
$54 STARTOF(section); followed by the section’s STRING name.
$55 SIZEOF(sectiontype); followed by the sectiontype’s BYTE value (see the Type values

in “Sections”).
$56 STARTOF(sectiontype); followed by the sectiontype’s BYTE value (see the Type

values in “Sections”).
$60 ldh check. Checks if the value is a valid ldh operand (see “Load Instructions” in gbz80(7)), i.e.

that it is between either $00 and $FF, or $FF00 and $FFFF, both inclusive. The value is then
ANDed with $00FF (& $FF).

$61 rst check. Checks if the value is a valid rst vector (see “RST vec” in gbz80(7)), that is, one of
$00, $08, $10, $18, $20, $28, $30, or $38. The value is then ORed with $C7 (| $C7).

$62 bit/res/set check; followed by the instruction’s BYTE mask. Checks if the value is a valid bit
index (see e.g. “BIT u3, r8” in gbz80(7)), that is, from 0 to 7. The value is then ORed with the in-
struction’s mask.

$80 Integer literal; followed by the LONG integer.
$70 HIGH byte.
$71 LOW byte.
$72 BITWIDTH value.
$73 TZCOUNT value.
$81 A symbol’s value; followed by the symbol’s LONG ID.

SEE ALSO
rgbasm(1), rgbasm(5), rgblink(1), rgblink(5), rgbfix(1), rgbgfx(1), gbz80(7), rgbds(7)

HISTORY
rgbasm(1) and rgblink(1) were originally written by Carsten Sørensen as part of the ASMotor package, and
was later repackaged in RGBDS by Justin Lloyd. It is now maintained by a number of contributors at
https://github.com/gbdev/rgbds.

Debian February 2, 2025 5

	RGBDS(5)
	Name
	Description
	File structure
	Header
	Source file info
	Symbols
	Sections
	Assertions
	RPN expressions

	See also
	History

