
RGBASM(5) File Formats Manual RGBASM(5)

NAME
rgbasm — language documentation

DESCRIPTION
This is the full description of the language used by rgbasm(1). The description of the instructions sup-
ported by the Game Boy CPU is in gbz80(7).

It is strongly recommended to have some familiarity with the Game Boy hardware before reading this doc-
ument. RGBDS is specifically targeted at the Game Boy, and thus a lot of its features tie directly to its con-
cepts. This document is not intended to be a Game Boy hardware reference.

Generally, “the linker” will refer to rgblink(1), but any program that processes RGB object files (described
in rgbds(5)) can be used in its place.

SYNTAX
The syntax is lineâbased, just as in any other assembler, meaning that you do one instruction or pseudoâop
per line:

[label] [instruction] [; comment]

Example:

John: ld a,87 ;Weee

All reserved keywords (pseudoâops, mnemonics, registers etc.) are caseâinsensitive, all identifiers (symbol
names) are case-sensitive.

Comments are used to give humans information about the code, such as explanations. The assembler
always ignores comments and their contents.

There are two syntaxes for comments. The most common is that anything that follows a semicolon ‘;’ not
inside a string, is a comment until the end of the line. The other is that lines beginning with a ‘∗’ (not even
spaces before it) are ignored. This second syntax is deprecated (will be removed in a future version) and
should be replaced with the first one.

Sometimes lines can be too long and it may be necessary to split them. To do so, put a backslash at the end
of the line:

DB 1, 2, 3, \
4, 5, 6, \ ; Put it before any comments
7, 8, 9

This works anywhere in the code except inside of strings. To split strings it is needed to use STRCAT() like
this:

db STRCAT("Hello ", \
"world!")

EXPRESSIONS
An expression can be composed of many things. Numerical expressions are always evaluated using signed
32-bit math. Zero is considered to be the only "false" number, all non-zero numbers (including negative)
are "true".

An expression is said to be "constant" if rgbasm knows its value. This is generally always the case, unless
a label is involved, as explained in the “SYMBOLS” section.

The instructions in the macro-language generally require constant expressions.

Numeric Formats
There are a number of numeric formats.

Format type Prefix Accepted characters
Hexadecimal $ 0123456789ABCDEF

GNU December 5, 2019 1

RGBASM(5) File Formats Manual RGBASM(5)

Decimal none 0123456789
Octal & 01234567
Binary % 01
Fixed point (16.16) none 01234.56789
Character constant none "ABYZ"
Gameboy graphics ` 0123

The "character constant" form yields the value the character maps to in the current charmap. For example,
by default (refer to ascii(7)) ‘"A"’ yields 65. See “Character maps” for information on charmaps.

The last one, Gameboy graphics, is quite interesting and useful. After the backtick, 8 digits between 0 and
3 are expected, corresponding to pixel values. The resulting value is the two bytes of tile data that would
produce that row of pixels. For example, ‘`01012323’ is equivalent to ‘$0F55’.

You can also use symbols, which are implicitly replaced with their value.

Operators
A great number of operators you can use in expressions are available (listed from highest to lowest prece-
dence):

Operator Meaning
() Precedence override
FUNC() Built-in function call
˜ + - Unary complement/plus/minus
∗ / % Multiply/divide/modulo
<< >> Shift left/right
& | ˆ Binary and/or/xor
+ - Add/subtract
!= == <= >= < >Comparison
&& || Boolean and/or
! Unary not

˜ complements a value by inverting all its bits.

% is used to get the remainder of the corresponding division. ‘5 % 2’ is 1.

Shifting works by shifting all bits in the left operand either left (‘<<’) or right (‘>>’) by the right operand’s
amount. When shifting left, all newly-inserted bits are reset; when shifting right, they are copies of the
original most significant bit instead. This makes ‘a << b’ and ‘a >> b’ equivalent to multiplying and divid-
ing by 2 to the power of b, respectively.

Comparison operators return 0 if the comparison is false, and 1 otherwise.

Unlike in a lot of languages, and for technical reasons, rgbasm still evaluates both operands of ‘&&’ and
‘||’.

! returns 1 if the operand was 0, and 0 otherwise.

Fixedâpoint Expressions
Fixed-point numbers are basically normal (32-bit) integers, which count 65536th’s instead of entire units,
offering better precision than integers but limiting the range of values. The upper 16 bits are used for the
integer part and the lower 16 bits are used for the fraction (65536ths). Since they are still akin to integers,
you can use them in normal integer expressions, and some integer operators like ‘+’ and ‘-’ don’t care
whether the operands are integers or fixed-point. You can easily truncate a fixed-point number into an inte-
ger by shifting it right by 16 bits. It follows that you can convert an integer to a fixed-point number by
shifting it left.

The following functions are designed to operate with fixed-point numbers: delim $$

Name Operation

GNU December 5, 2019 2

RGBASM(5) File Formats Manual RGBASM(5)

DIV(x , y) $x ÷ y$
MUL(x , y) $x × y$
SIN(x) $sin (x)$
COS(x) $cos (x)$
TAN(x) $tan (x)$
ASIN(x) $asin (x)$
ACOS(x) $acos (x)$
ATAN(x) $atan (x)$
ATAN2(x , y) Angle between (x, y) and $(1, 0)$

delim off

These functions are useful for automatic generation of various tables. Example: assuming a circle has
65536.0 degrees, and sine values are in range [-1.0 ; 1.0]:

; --
; -- Generate a 256-byte sine table with values between 0 and 128
; --
ANGLE = 0.0

REPT 256
db MUL(64.0, SIN(ANGLE) + 1.0) >> 16

ANGLE = ANGLE + 256.0 ; 256 = 65536 / table_len, with table_len = 256
ENDR

String Expressions
The most basic string expression is any number of characters contained in double quotes ("for
instance"). The backslash character ‘\’ is special in that it causes the character following it to be
“escaped”, meaning that it is treated differently from normal. There are a number of escape sequences you
can use within a string:

StringMeaning
‘\\Produces a backslash’
‘\"Produces a double quote without terminating’
‘\,Comma’
‘\{Curly bracket left’
‘\}Curly bracket right’
‘\nNewline ($0A)’
‘\rCarriage return ($0D)’
‘\tTab ($09)’
"\1" – "\9"Macro argument (Only the body of a macro, see “Invoking macros”)
‘\@Label name suffix (Only in the body of macros and REPTs)’

(Note that some of those can be used outside of strings, when noted further in this document.)

A funky feature is {symbol} within a string, called “symbol interpolation”. This will paste symbol’s
contents as a string. If it’s a string symbol, the string is simply inserted. If it’s a numeric symbol, its value
is converted to hexadecimal notation with a dollar sign ‘$’ prepended.

TOPIC equs "life, the universe, and everything"
ANSWER = 42
; Prints "The answer to life, the universe, and everything is $2A"
PRINTT "The answer to {TOPIC} is {ANSWER}\n"

Symbol interpolations can be nested, too!

It’s possible to change the way numeric symbols are converted by specifying a print type like so:
{d:symbol}. Valid print types are:

Print type Format Example

GNU December 5, 2019 3

RGBASM(5) File Formats Manual RGBASM(5)

‘d Decimal 42’
‘x Lowercase hexadecimal 2a’
‘X Uppercase hexadecimal 2A’
‘b Binary 101010’

Note that print types should only be used with numeric values, not strings.

HINT: The {symbol} construct can also be used outside strings. The symbol’s value is again inserted di-
rectly.

The following functions operate on string expressions. Most of them return a string, however some of these
functions actually return an integer and can be used as part of an integer expression!

Name Operation
STRLEN(string) Returns the number of characters in string.
STRCAT(str1 , str2)Appends str2 to str1.
STRCMP(str1 , str2)Returns negative if str1 is alphabetically lower than str2 , zero if they match,

positive if str1 is greater than str2.
STRIN(str1 , str2) Returns the position of str2 in str1 or zero if it’s not present (first character

is position 1).
STRSUB(str , pos , len)Returns a substring from str starting at pos (first character is position 1)

and len characters long.
STRUPR(str) Converts all characters in str to capitals and returns the new string.
STRLWR(str) Converts all characters in str to lower case and returns the new string.

Character maps
When writing text that is meant to be displayed in the Game Boy, the characters used in the source code
may have a different encoding than the default of ASCII. For example, the tiles used for uppercase letters
may be placed starting at tile index 128, which makes it difficult to add text strings to the ROM.

Character maps allow mapping strings up to 16 characters long to an abitrary 8-bit value:

CHARMAP "<LF>", 10
CHARMAP "í", 20
CHARMAP "A", 128

By default, a character map contains ASCII encoding.

It is possible to create multiple character maps and then switch between them as desired. This can be used
to encode debug information in ASCII and use a different encoding for other purposes, for example. Ini-
tially, there is one character map called ‘main’ and it is automatically selected as the current character map
from the beginning. There is also a character map stack that can be used to save and restore which charac-
ter map is currently active.

Command Meaning
NEWCHARMAP name Creates a new, empty character map called name.
NEWCHARMAP name, basename Creates a new character map called name, copied from character

map basename.
SETCHARMAP name Switch to character map name.
PUSHC Push the current character map onto the stack.
POPC Pop a character map off the stack and switch to it.

Note: Character maps affect all strings in the file from the point in which they are defined, until switching
to a different character map. This means that any string that the code may want to print as debug informa-
tion will also be affected by it.

Note: The output value of a mapping can be 0. If this happens, the assembler will treat this as the end of
the string and the rest of it will be trimmed.

Other functions
There are a few other functions that do various useful things:

GNU December 5, 2019 4

RGBASM(5) File Formats Manual RGBASM(5)

Name Operation
BANK(arg) Returns a bank number. If arg is the symbol @, this function returns the bank of the current

section. If arg is a string, it returns the bank of the section that has that name. If arg is a
label, it returns the bank number the label is in. The result may be constant if rgbasm is able
to compute it.

DEF(label)Returns TRUE (1) if label has been defined, FALSE (0) otherwise. String symbols are not
expanded within the parentheses.

HIGH(arg) Returns the top 8 bits of the operand if arg is a label or constant, or the top 8-bit register if it
is a 16-bit register.

LOW(arg) Returns the bottom 8 bits of the operand if arg is a label or constant, or the bottom 8-bit
register if it is a 16-bit register (AF isn’t a valid register for this function).

ISCONST(arg)Returns 1 if arg’s value is known by RGBASM (e.g. if it can be an argument to IF), or 0
if only RGBLINK can compute its value.

SECTIONS
Before you can start writing code, you must define a section. This tells the assembler what kind of infor-
mation follows and, if it is code, where to put it.

SECTION name, type
SECTION name, type, options
SECTION name, type[addr]
SECTION name, type[addr], options

name is a string enclosed in double quotes, and can be a new name or the name of an existing section. If
the type doesn’t match, an error occurs. All other sections must have a unique name, even in different
source files, or the linker will treat it as an error.

Possible section types are as follows:

ROM0 A ROM section. addr can range from $0000 to $3FFF, or $0000 to $7FFF if tiny ROM mode is
enabled in the linker.

ROMX A banked ROM section. addr can range from $4000 to $7FFF. bank can range from 1 to 511.
Becomes an alias for ROM0 if tiny ROM mode is enabled in the linker.

VRAM A banked video RAM section. addr can range from $8000 to $9FFF. bank can be 0 or 1, but
bank 1 is unavailable if DMG mode is enabled in the linker.

SRAM A banked external (save) RAM section. addr can range from $A000 to $BFFF. bank can range
from 0 to 15.

WRAM0 A general-purpose RAM section. addr can range from $C000 to $CFFF, or $C000 to $DFFF if
WRAM0 mode is enabled in the linker.

WRAMX A banked general-purpose RAM section. addr can range from $D000 to $DFFF. bank can
range from 1 to 7. Becomes an alias for WRAM0 if WRAM0 mode is enabled in the linker.

OAM An object attribute RAM section. addr can range from $FE00 to $FE9F.

HRAM A high RAM section. addr can range from $FF80 to $FFFE.

Note: While rgbasm will automatically optimize ld instructions to the smaller and faster ldh
(see gbz80(7)) whenever possible, it is generally unable to do so when a label is involved. Using
the ldh instruction directly is recommended. This forces the assembler to emit a ldh instruction
and the linker to check if the value is in the correct range.

Since RGBDS produces ROMs, code and data can only be placed in ROM0 and ROMX sections. To put
some in RAM, have it stored in ROM, and copy it to RAM.

options are comma-separated and may include:

GNU December 5, 2019 5

RGBASM(5) File Formats Manual RGBASM(5)

BANK[bank]
Specify which bank for the linker to place the section in. See above for possible values for bank,
depending on type.

ALIGN[align, offset]
Place the section at an address whose align leastâsignificant bits are equal to offset. (Note
that ALIGN[align] is a shorthand for ALIGN[align, 0]). This option can be used with
[addr], as long as they don’t contradict eachother. It’s also possible to request alignment in the
middle of a section, see “Requesting alignment” below.

If [addr] is not specified, the section is considered “floating”; the linker will automatically calculate an ap-
propriate address for the section. Similarly, if BANK[bank] is not specified, the linker will automatically
find a bank with enough space.

Sections can also be placed by using a linker script file. The format is described in rgblink(5). They allow
the user to place floating sections in the desired bank in the order specified in the script. This is useful if
the sections can’t be placed at an address manually because the size may change, but they have to be to-
gether.

Section examples:

SECTION "Cool Stuff",ROMX
This switches to the section called “CoolStuff”, creating it if it doesn’t already exist. It can end up in any
ROM bank. Code and data may follow.

If it is needed, the the base address of the section can be specified:

SECTION "Cool Stuff",ROMX[$4567]

An example with a fixed bank:

SECTION "Cool Stuff",ROMX[$4567],BANK[3]

And if you want to force only the section’s bank, and not its position within the bank, that’s also possible:

SECTION "Cool Stuff",ROMX,BANK[7]

Alignment examples: The first one could be useful for defining an OAM buffer to be DMA’d, since it must
be aligned to 256 bytes. The second could also be appropriate for GBC HDMA, or for an optimized copy
code that requires alignment.

SECTION "OAM Data",WRAM0,ALIGN[8] ; align to 256 bytes
SECTION "VRAM Data",ROMX,BANK[2],ALIGN[4] ; align to 16 bytes

Section Stack
POPS and PUSHS provide the interface to the section stack. The number of entries in the stack is limited
only by the amount of memory in your machine.

PUSHS will push the current section context on the section stack. POPS can then later be used to restore it.
Useful for defining sections in included files when you don’t want to override the section context at the
point the file was included.

RAM Code
Sometimes you want to have some code in RAM. But then you can’t simply put it in a RAM section, you
have to store it in ROM and copy it to RAM at some point.

This means the code (or data) will not be stored in the place it gets executed. Luckily, LOAD blocks are the
perfect solution to that. Here’s an example of how to use them:

SECTION "LOAD example", ROMX
CopyCode:

ld de, RAMCode
ld hl, RAMLocation
ld c, RAMLocation.end - RAMLocation

GNU December 5, 2019 6

RGBASM(5) File Formats Manual RGBASM(5)

.loop
ld a, [de]
inc de
ld [hli], a
dec c
jr nz, .loop
ret

RAMCode:
LOAD "RAM code", WRAM0

RAMLocation:
ld hl, .string
ld de, $9864

.copy
ld a, [hli]
ld [de], a
inc de
and a
jr nz, .copy
ret

.string
db "Hello World!", 0

.end
ENDL

A LOAD block feels similar to a SECTION declaration because it creates a new one. All data and code
generated within such a block is placed in the current section like usual, but all labels are created as if they
were placed in this newly-created section.

In the example above, all of the code and data will end up in the "LOAD example" section. You will notice
the ‘RAMCode’ and ‘RAMLocation’ labels. The former is situated in ROM, where the code is stored, the
latter in RAM, where the code will be loaded.

You cannot nest LOAD blocks, nor can you change the current section within them.

Unionized Sections
When you’re tight on RAM, you may want to define overlapping blocks of variables, as explained in the
“Unions” section. However, the UNION keyword only works within a single file, which prevents e.g. defin-
ing temporary variables on a single memory area across several files. Unionized sections solve this prob-
lem. To declare an unionized section, add a UNION keyword after the SECTION one; the declaration is
otherwise not different. Unionized sections follow some different rules from normal sections:

• The same unionized section (= having the same name) can be declared several times per
rgbasm invocation, and across several invocations. Different declarations are treated and
merged identically whether within the same invocation, or different ones.

• If one section has been declared as unionized, all sections with the same name must be declared
unionized as well.

• All declarations must have the same type. For example, even if rgblink(1)’s -w flag is used,
WRAM0 and WRAMX types are still considered different.

• Different constraints (alignment, bank, etc.) can be specified for each unionized section declara-
tion, but they must all be compatible. For example, alignment must be compatible with any
fixed address, all specified banks must be the same, etc.

GNU December 5, 2019 7

RGBASM(5) File Formats Manual RGBASM(5)

• Unionized sections cannot have type ROM0 or ROMX.

Different declarations of the same unionized section are not appended, but instead overlaid on top of ea-
chother, just like “Unions”. Similarly, the size of an unionized section is the largest of all its declarations.

Section Fragments
Section fragments are sections with a small twist: when several of the same name are encountered, they are
concatenated instead of producing an error. This works within the same file (paralleling the behavior
"plain" sections has in previous versions), but also across object files. However, similarly to “Unionized
Sections”, some rules must be followed:

• If one section has been declared as fragment, all sections with the same name must be declared
fragments as well.

• All declarations must have the same type. For example, even if rgblink(1)’s -w flag is used,
WRAM0 and WRAMX types are still considered different.

• Different constraints (alignment, bank, etc.) can be specified for each unionized section declara-
tion, but they must all be compatible. For example, alignment must be compatible with any
fixed address, all specified banks must be the same, etc.

• A section fragment may not be unionized; after all, that wouldn’t make much sense.

When RGBASM merges two fragments, the one encountered later is appended to the one encountered ear-
lier.

When RGBLINK merges two fragments, the one whose file was specified last is appended to the one whose
file was specified first. For example, assuming bar.o, baz.o, and foo.o all contain a fragment with the
same name, the command

rgblink -o rom.gb baz.o foo.o bar.o
would produce the fragment from baz.o first, followed by the one from foo.o, and the one from bar.o
last.

SYMBOLS
RGBDS supports several types of symbols:

Label Numerical symbol designating a memory location. May or may not have a value known at assem-
bly time.

Constant Numerical symbol whose value has to be known at assembly time.

Macro A block of rgbasm code that can be invoked later.

String equate String symbol that can be evaluated, similarly to a macro.

Symbol names can contain letters, numbers, underscores, hashes and ‘@’. However, they must begin with
either a letter, a number, or an underscore. Periods are allowed exclusively for labels, as described below.
A symbol cannot have the same name as a reserved keyword. In the line where a symbol is defined there
mustn’t be any whitespace before it, otherwise rgbasm will treat it as a macro invocation.

Label declaration
One of the assembler’s main tasks is to keep track of addresses for you, so you can work with
meaningful names instead of "magic" numbers.

This can be done in a number of ways:

GlobalLabel ; This syntax is deprecated,
AnotherGlobal: ; please use this instead
.locallabel
.yet_a_local:
AnotherGlobal.with_another_local:
ThisWillBeExported:: ; Note the two colons
ThisWillBeExported.too::

GNU December 5, 2019 8

RGBASM(5) File Formats Manual RGBASM(5)

Declaring a label (global or local) with ‘::’ does an EXPORT at the same time. (See “Exporting
and importing symbols” below).

Any label whose name does not contain a period is a global label, others are locals. Declaring a
global label sets it as the current label scope until the next one; any local label whose first charac-
ter is a period will have the global label’s name implicitly prepended. Local labels can be de-
clared as scope.local: or simply as as .local:. If the former notation is used, then
scope must be the actual current scope.

Local labels may have whitespace before their declaration as the only exception to the rule.

A label’s location (and thus value) is usually not determined until the linking stage, so labels usu-
ally cannot be used as constants. However, if the section in which the label is declared has a
fixed base address, its value is known at assembly time.

rgbasm is able to compute the subtraction of two labels either if both are constant as described
above, or if both belong to the same section.

EQU EQU allows defining constant symbols. Unlike SET below, constants defined this way cannot be
redefined. They can, for example, be used for things such as bit definitions of hardware registers.

SCREEN_WIDTH equ 160 ; In pixels
SCREEN_HEIGHT equ 144

Note that colons ‘:’ following the name are not allowed.

SET SET, or its synonym =, defines constant symbols like EQU, but those constants can be re-defined.
This is useful for variables in macros, for counters, etc.

ARRAY_SIZE EQU 4
COUNT SET 2
COUNT SET ARRAY_SIZE+COUNT
; COUNT now has the value 6
COUNT = COUNT + 1

Note that colons ‘:’ following the name are not allowed.

RSSET, RSRESET, RB, RW
The RS group of commands is a handy way of defining structures:

RSRESET
str_pStuff RW 1
str_tData RB 256
str_bCount RB 1
str_SIZEOF RB 0

The example defines four constants as if by:

str_pStuff EQU 0
str_tData EQU 2
str_bCount EQU 258
str_SIZEOF EQU 259

There are five commands in the RS group of commands:

Command Meaning
RSRESET Equivalent to RSSET 0.
RSSET constexprSets the _RS counter to constexpr.
RB constexpr Sets the preceding symbol to _RS and adds constexpr to _RS.
RW constexpr Sets the preceding symbol to _RS and adds constexpr ∗ 2 to _RS.

GNU December 5, 2019 9

RGBASM(5) File Formats Manual RGBASM(5)

RL constexpr Sets the preceding symbol to _RS and adds constexpr ∗ 4 to _RS. (In
practice, this one cannot be used due to a bug).

Note that colons ‘:’ following the name are not allowed.

EQUS EQUS is used to define string symbols. Wherever the assembler meets a string symbol its name
is replaced with its value. If you are familiar with C you can think of it as similar to #define
.

COUNTREG EQUS "[hl+]"
ld a,COUNTREG

PLAYER_NAME EQUS "\"John\""
db PLAYER_NAME

This will be interpreted as:

ld a,[hl+]
db "John"

String symbols can also be used to define small one-line macros:

pusha EQUS "push af\npush bc\npush de\npush hl\n"

Note that colons ‘:’ following the name are not allowed. String equates can’t be exported or im-
ported.

Important note: An EQUS can be expanded to a string that contains another EQUS and it will be
expanded as well. If this creates an infinite loop, rgbasm will error out once a certain depth is
reached. See the -r command-line option in rgbasm(1). Also, a macro can contain an EQUS
which calls the same macro, which causes the same problem.

MACRO One of the best features of an assembler is the ability to write macros for it. Macros can be
called with arguments, and can react depending on input using IF constructs.

MyMacro: MACRO
ld a,80
call MyFunc
ENDM

Note that a single colon ‘:’ following the macro’s name is required. Macros can’t be exported or
imported.

Exporting and importing symbols
Importing and exporting of symbols is a feature that is very useful when your project spans many source
files and, for example, you need to jump to a routine defined in another file.

Exporting of symbols has to be done manually, importing is done automatically if rgbasm finds a symbol
it does not know about.

The following will cause symbol1, symbol2 and so on to be accessible to other files during the link
process:

EXPORT symbol1 [, symbol2, . . .]

GLOBAL is a deprecated synonym for EXPORT, do not use it.

Note also that only exported symbols will appear in symbol and map files produced by rgblink(1).

Purging symbols
PURGE allows you to completely remove a symbol from the symbol table as if it had never existed. USE
WITH EXTREME CAUTION!!! I can’t stress this enough, you seriously need to know what you are
doing. DON’T purge a symbol that you use in expressions the linker needs to calculate. When not sure,
it’s probably not safe to purge anything other than string symbols, macros, and constants.

GNU December 5, 2019 10

RGBASM(5) File Formats Manual RGBASM(5)

Kamikaze EQUS "I don’t want to live anymore"
AOLer EQUS "Me too"

PURGE Kamikaze, AOLer

Note that, as an exception, string symbols in the argument list of a PURGE command will not be expanded.

Predeclared Symbols
The following symbols are defined by the assembler:

Type Name Contents
EQU @ PC value
EQU _PI Fixed point π
SET _RS _RS Counter
EQU _NARG Number of arguments passed to macro
EQU __LINE__ The current line number
EQUS __FILE__ The current filename
EQUS __DATE__ Today’s date
EQUS __TIME__ The current time
EQUS __ISO_8601_LOCAL__ ISO 8601 timestamp (local)
EQUS __ISO_8601_UTC__ ISO 8601 timestamp (UTC)
EQU __UTC_YEAR__ Today’s year
EQU __UTC_MONTH__ Today’s month number, 1–12
EQU __UTC_DAY__ Today’s day of the month, 1–31
EQU __UTC_HOUR__ Current hour, 0–23
EQU __UTC_MINUTE__ Current minute, 0–59
EQU __UTC_SECOND__ Current second, 0–59
EQU __RGBDS_MAJOR__ Major version number of RGBDS
EQU __RGBDS_MINOR__ Minor version number of RGBDS
EQU __RGBDS_PATCH__ Patch version number of RGBDS

DEFINING DATA
Declaring variables in a RAM section

DS allocates a number of empty bytes. This is the preferred method of allocating space in a RAM section.
You can also use DB, DW and DL without any arguments instead (see “Defining constant data” below).

DS 42 ; Allocates 42 bytes

Empty space in RAM sections will not be initialized. In ROM sections, it will be filled with the value
passed to the -p command-line option, except when using overlays with -O.

Defining constant data
DB defines a list of bytes that will be stored in the final image. Ideal for tables and text. Note that strings
are not zero-terminated!

DB 1,2,3,4,"This is a string"

DS can also be used to fill a region of memory with some value. The following produces 42 times the byte
$FF:

DS 42, $FF

Alternatively, you can use DW to store a list of words (16-bit) or DL to store a list of double-words/longs
(32-bit). Strings are not allowed as arguments to DW and DL.

You can also use DB, DW and DL without arguments, or leaving empty elements at any point in the list.
This works exactly like DS 1, DS 2 and DS 4 respectively. Consequently, no-argument DB, DW and DL
can be used in a WRAM0 / WRAMX / HRAM / VRAM / SRAM section.

Including binary files
You probably have some graphics, level data, etc. you’d like to include. Use INCBIN to include a raw bi-
nary file as it is. If the file isn’t found in the current directory, the include-path list passed to rgbasm(1) (see
the -i option) on the command line will be searched.

GNU December 5, 2019 11

RGBASM(5) File Formats Manual RGBASM(5)

INCBIN "titlepic.bin"
INCBIN "sprites/hero.bin"

You can also include only part of a file with INCBIN. The example below includes 256 bytes from
data.bin, starting from byte 78.

INCBIN "data.bin",78,256

Unions
Unions allow multiple memory allocations to overlap, like unions in C. This does not increase the amount
of memory available, but allows re-using the same memory region for different purposes.

A union starts with a UNION keyword, and ends at the corresponding ENDU keyword. NEXTU separates
each block of allocations, and you may use it as many times within a union as necessary.

; Let’s say PC = $C0DE here
UNION
; Here, PC = $C0DE

Name: ds 8
; PC = $C0E6

Nickname: ds 8
; PC = $C0EE
NEXTU
; PC is back to $C0DE

Health: dw
; PC = $C0E0

Something: ds 6
; And so on

Lives: db
NEXTU

VideoBuffer: ds 19
ENDU

In the example above, ‘Name, Health, VideoBuffer’ all have the same value, as do ‘Nickname’ and ‘Lives’.
Thus, keep in mind that ld [Health], a is identical to ld [Name], a.

The size of this union is 19 bytes, as this is the size of the largest block (the last one, containing
‘VideoBuffer’). Nesting unions is possible, with each inner union’s size being considered as described
above.

Unions may be used in any section, but inside them may only be DS - like commands (see “Declaring
variables in a RAM section”).

THE MACRO LANGUAGE
Invoking macros

You execute the macro by inserting its name.

add a,b
ld sp,hl
MyMacro ; This will be expanded
sub a,87

It’s valid to call a macro from a macro (yes, even the same one).

When rgbasm sees MyMacro it will insert the macro definition (the code enclosed in MACRO / ENDM).

Suppose your macro contains a loop.

LoopyMacro: MACRO
xor a,a

.loop ld [hl+],a
dec c

GNU December 5, 2019 12

RGBASM(5) File Formats Manual RGBASM(5)

jr nz,.loop
ENDM

This is fine, but only if you use the macro no more than once per scope. To get around this problem, there
is the escape sequence \@ that expands to a unique string.

\@ also works in REPT blocks.

LoopyMacro: MACRO
xor a,a

.loop\@ ld [hl+],a
dec c
jr nz,.loop\@

ENDM

Important note: Since a macro can call itself (or a different macro that calls the first one), there can be cir-
cular dependency problems. If this creates an infinite loop, rgbasm will error out once a certain depth is
reached. See the -r command-line option in rgbasm(1). Also, a macro can have inside an EQUS which
references the same macro, which has the same problem.

It’s possible to pass arguments to macros as well! You retrieve the arguments by using the escape se-
quences \1 through \9, \1 being the first argument specified on the macro invocation.

LoopyMacro: MACRO
ld hl,\1
ld c,\2
xor a,a

.loop\@ ld [hl+],a
dec c
jr nz,.loop\@
ENDM

Now I can call the macro specifying two arguments, the first being the address and the second being a byte
count. The generated code will then reset all bytes in this range.

LoopyMacro MyVars,54

Arguments are passed as string equates, although there’s no need to enclose them in quotes. Thus, an ex-
pression will not be evaluated first but kind of copy-pasted. This means that it’s probably a very good idea
to use brackets around \1 to \9 if you perform further calculations on them. For instance, consider the fol-
lowing:

print_double: MACRO
PRINTV \1 ∗ 2

ENDM
print_double 1 + 2

The PRINTV statement will expand to PRINTV 1 + 2 ∗ 2, which will print 5 and not 6 as you might
have expected.

Line continuations work as usual inside macros or lists of macro arguments. However, some characters
need to be escaped, as in the following example:

PrintMacro: MACRO
PRINTT \1

ENDM

PrintMacro STRCAT("Hello "\, \
"world\\n")

GNU December 5, 2019 13

RGBASM(5) File Formats Manual RGBASM(5)

The comma needs to be escaped to avoid it being treated as separating the macro’s arguments. The back-
slash ‘\’ (from ‘\n’) also needs to be escaped because of the way rgbasm processes macro arguments.

In reality, up to 256 arguments can be passed to a macro, but you can only use the first 9 like this. If you
want to use the rest, you need to use the SHIFT command.

SHIFT is a special command only available in macros. Very useful in REPT blocks. It will shift the argu-
ments by one to the left. \1 will get the value of \2, \2 will get the value of \3, and so forth.

This is the only way of accessing the value of arguments from 10 to 256.

SHIFT can optionally be given an integer parameter, and will apply the above shifting that number of
times.

Printing things during assembly
The next four commands print text and values to the standard output. Useful for debugging macros, or
wherever you may feel the need to tell yourself some important information.

PRINTT "I’m the greatest programmer in the whole wide world\n"
PRINTI (2 + 3) / 5
PRINTV $FF00 + $F0
PRINTF MUL(3.14, 3987.0)

PRINTT prints out a string. Be careful to add a line feed ("\n") at the end, as it is not added automatically.

PRINTV prints out an integer value in hexadecimal or, as in the example, the result of a calculation. Unsur-
prisingly, you can also print out a constant symbol’s value.

PRINTI prints out a signed integer value.

PRINTF prints out a fixed point value.

Be careful that none of those automatically print a line feed; if you need one, use PRINTT \n.

Automatically repeating blocks of code
Suppose you want to unroll a time consuming loop without copy-pasting it. REPT is here for that purpose.
Everything between REPT and the matching ENDR will be repeated a number of times just as if you had
done a copy/paste operation yourself. The following example will assemble add a,c four times:

REPT 4
add a,c

ENDR

You can also use REPT to generate tables on the fly:

; --
; -- Generate a 256 byte sine table with values between 0 and 128
; --
ANGLE = 0.0

REPT 256
db (MUL(64.0, SIN(ANGLE)) + 64.0) >> 16

ANGLE = ANGLE+256.0
ENDR

As in macros, you can also use the escape sequence \@. REPT blocks can be nested.

Aborting the assembly process
FAIL and WARN can be used to print errors and warnings respectively during the assembly process. This is
especially useful for macros that get an invalid argument. FAIL and WARN take a string as the only argu-
ment and they will print this string out as a normal error with a line number.

FAIL stops assembling immediately while WARN shows the message but continues afterwards.

GNU December 5, 2019 14

RGBASM(5) File Formats Manual RGBASM(5)

If you need to ensure some assumption is correct when compiling, you can use ASSERT and
STATIC_ASSERT. Syntax examples are given below:

Function:
xor a

ASSERT LOW(Variable) == 0
ld h, HIGH(Variable)
ld l, a
ld a, [hli]
; You can also indent this!
ASSERT BANK(OtherFunction) == BANK(Function)
call OtherFunction

; Lowercase also works
assert Variable + 1 == OtherVariable

ld c, [hl]
ret

.end
; If you specify one, a message will be printed
STATIC_ASSERT .end - Function < 256, "Function is too large!"

First, the difference between ASSERT and STATIC_ASSERT is that the former is evaluated by RGBASM
if it can, otherwise by RGBLINK; but the latter is only ever evaluated by RGBASM. If RGBASM cannot
compute the value of the argument to STATIC_ASSERT, it will produce an error.

Second, as shown above, a string can be optionally added at the end, to give insight into what the assertion
is checking.

Finally, you can add one of WARN, FAIL or FATAL as the first optional argument to either ASSERT or
STATIC_ASSERT. If the assertion fails, WARN will cause a simple warning (controlled by rgbasm(1) flag
-Wassert) to be emitted; FAIL (the default) will cause a non-fatal error; and FATAL immediately
aborts.

Including other source files
Use INCLUDE to process another assembler file and then return to the current file when done. If the file
isn’t found in the current directory the include path list (see the -i option in rgbasm(1)) will be searched.
You may nest INCLUDE calls infinitely (or until you run out of memory, whichever comes first).

INCLUDE "irq.inc"

Conditional assembling
The four commands IF, ELIF, ELSE, and ENDC let you have rgbasm skip over parts of your code de-
pending on a condition. This is a powerful feature commonly used in macros.

IF NUM < 0
PRINTT "NUM < 0\n"

ELIF NUM == 0
PRINTT "NUM == 0\n"

ELSE
PRINTT "NUM > 0\n"

ENDC

The ELIF (standing for "else if") and ELSE blocks are optional. IF / ELIF / ELSE / ENDC blocks can be
nested.

Note that if an ELSE block is found before an ELIF block, the ELIF block will be ignored. All ELIF
blocks must go before the ELSE block. Also, if there is more than one ELSE block, all of them but the first
one are ignored.

GNU December 5, 2019 15

RGBASM(5) File Formats Manual RGBASM(5)

MISCELLANEOUS
Changing options while assembling

OPT can be used to change some of the options during assembling from within the source, instead of defin-
ing them on the command-line.

OPT takes a comma-separated list of options as its argument:

PUSHO
OPT g.oOX ;Set the GB graphics constants to use these characters
DW ‘..ooOOXX
POPO
DW ‘00112233

The options that OPT can modify are currently: b, g and p.

POPO and PUSHO provide the interface to the option stack. PUSHO will push the current set of options on
the option stack. POPO can then later be used to restore them. Useful if you want to change some options
in an include file and you don’t want to destroy the options set by the program that included your file. The
stack’s number of entries is limited only by the amount of memory in your machine.

Requesting alignment
While ALIGN as presented in “SECTIONS” is often useful as-is, sometimes you instead want a particular
piece of data (or code) in the middle of the section to be aligned. This is made easier through the use of
mid-section align align, offset. It will alter the section’s attributes to ensure that the location the
align directive is at, has its align lower bits equal to offset.

If the constraint cannot be met (for example because the section is fixed at an incompatible address), and er-
ror is produced. Note that align align is a shorthand for align align, 0.

SEE ALSO
rgbasm(1), rgblink(1), rgblink(5), rgbds(5), rgbds(7), gbz80(7)

HISTORY
rgbasm was originally written by Carsten Sørensen as part of the ASMotor package, and was later pack-
aged in RGBDS by Justin Lloyd. It is now maintained by a number of contributors at
https://github.com/rednex/rgbds.

GNU December 5, 2019 16

	RGBASM(5)
	Name
	Description
	Syntax
	Expressions
	Numeric Formats
	Operators
	Fixedâpoint Expressions
	String Expressions
	Character maps
	Other functions

	Sections
	Section Stack
	RAM Code
	Unionized Sections
	Section Fragments

	Symbols
	Exporting and importing symbols
	Purging symbols
	Predeclared Symbols

	Defining data
	Declaring variables in a RAM section
	Defining constant data
	Including binary files
	Unions

	The macro language
	Invoking macros
	Printing things during assembly
	Automatically repeating blocks of code
	Aborting the assembly process
	Including other source files
	Conditional assembling

	Miscellaneous
	Changing options while assembling
	Requesting alignment

	See also
	History

