
RGBASM(5) File Formats Manual RGBASM(5)

NAME
rgbasm — language documentation

DESCRIPTION
This is the full description of the assembly language used by rgbasm(1). For the full description of instruc-
tions in the machine language supported by the Game Boy CPU, see gbz80(7).

It is advisable to have some familiarity with the Game Boy hardware before reading this document.
RGBDS is specifically targeted at the Game Boy, and thus a lot of its features tie directly to its concepts.
This document is not intended to be a Game Boy hardware reference.

Generally, “the linker” will refer to rgblink(1), but any program that processes RGBDS object files (de-
scribed in rgbds(5)) can be used in its place.

SYNTAX
The syntax is line-based, just as in any other assembler. Each line may have components in this order:

[directive] [; comment]
[label:] [instruction [:: instruction . . .]] [; comment]

Directives are commands to the assembler itself, such as PRINTLN, SECTION, or OPT.

Labels tie a name to a specific location within a section (see “Labels” below).

Instructions are assembled into Game Boy opcodes. Multiple instructions on one line, as well as data direc-
tives (see “Defining constant data in ROM” below), can be separated by double colons ‘::’.

The available instructions are documented in gbz80(7).

Note that where an instruction requires an 8-bit register r8, rgbasm can interpret HIGH(r16) as the top
8-bit register of the given r16, for example, HIGH(HL) for H; and LOW(r16) as the bottom one, for exam-
ple, LOW(HL) for L (except for LOW(AF), since F is not a valid register).

Note also that where an instruction requires a condition code cc, rgbasm can interpret !cc as the opposite
condition code; for example, !nz for z.

All reserved keywords (directives, register names, etc.) are case-insensitive; all identifiers (labels and other
symbol names) are case-sensitive.

Comments are used to give humans information about the code, such as explanations. The assembler
always ignores comments and their contents.

There are two kinds of comments, inline and block. Inline comments are anything that follows a semicolon
‘;’ not inside a string, until the end of the line. Block comments, beginning with ‘/∗’ and ending with
‘∗/’, can be split across multiple lines, or occur in the middle of an expression.

An example demonstrating these syntax features:

SECTION "My Code", ROM0 ; a directive
MyFunction: ; a label

push hl ; an instruction
/∗ ...and multiple instructions,

with mixed case ∗/
ld a, [hli] :: LD H, [HL] :: Ld l, a
pop /∗wait for it∗/ hl
ret

Sometimes lines can be too long and it may be necessary to split them. To do so, put a backslash at the end
of the line:

DB 1, 2, 3, \
4, 5, 6, \ ; Put it before any comments
7, 8, 9

DB "Hello, \ ; Space before the \ is included
world!" ; Any leading space is included

Debian September 30, 2025 1

RGBASM(5) File Formats Manual RGBASM(5)

Symbol interpolation
A funky feature is writing a symbol between {braces}, called “symbol interpolation”. This will paste
the symbol’s contents as if they were part of the source file. If it is a string symbol, its characters are sim-
ply inserted as-is. If it is a numeric symbol, its value is converted to hexadecimal notation with a dollar
sign ‘$’ prepended.

Symbol interpolations can be nested, too!

DEF topic EQUS "life, the universe, and \"everything\""
DEF meaning EQUS "answer"
; Defines answer = 42
DEF {meaning} = 42
; Prints "The answer to life, the universe, and "everything" is $2A"
PRINTLN "The {meaning} to {topic} is {{meaning}}"
PURGE topic, meaning, {meaning}

Symbols can be interpolated even in the contexts that disable automatic expansion of string constants:
name will be expanded in all of DEF({name}), DEF {name} EQU/=/EQUS/etc . . ., REDEF
{name} EQU/=/EQUS/etc . . ., FOR {name}, . . ., PURGE {name}, and MACRO {name},
but, for example, won’t be in DEF(name).

It’s possible to change the way symbols are printed by specifying a print format like so: {fmt:symbol}.
The fmt specifier consists of these parts:
<sign><exact><align><pad><width><frac><prec><type>. These parts are:

Part Meaning
<sign> May be ‘+’ or ‘ ’. If specified, prints this character in front of non-negative numbers.
<exact>May be ‘#’. If specified, prints the value in an "exact" format: with a base prefix for non-deci-

mal integer types (‘$’, ‘&’, or ‘%’); with a ‘q’ precision suffix for fixed-point numbers; or with
‘\’ escape characters for strings.

<align>May be ‘-’. If specified, aligns left instead of right.
<pad> May be ‘0’. If specified, pads right-aligned numbers with zeros instead of spaces.
<width>May be one or more ‘0’ – ‘9’. If specified, pads the value to this width, right-aligned with

spaces by default.
<frac> May be ‘.’ followed by zero or more ‘0’ – ‘9’. If specified, prints this many fractional digits of

a fixed-point number. Defaults to 5 digits, maximum 255 digits. (A ‘.’ followed by zero ‘0’ –
‘9’ prints zero fractional digits.)

<prec> May be ‘q’ followed by one or more ‘0’ – ‘9’. If specified, prints a fixed-point number at this
precision. Defaults to the current -Q option.

<type> Specifies the type of value.

All the format specifier parts are optional except the <type>. Valid print types are:

Type Format Example
‘d Signed decimal -42’
‘u Unsigned decimal 42’
‘x Lowercase hexadecimal 2a’
‘X Uppercase hexadecimal 2A’
‘b Binary 101010’
‘o Octal 52’
‘f Fixed-point 1234.56789’
‘s String string contents’

Examples:

SECTION "Test", ROM0[2]
X: ; This works with labels ∗∗whose address is known∗∗
DEF Y = 3 ; This also works with variables
DEF SUM EQU X + Y ; And likewise with numeric constants

Debian September 30, 2025 2

RGBASM(5) File Formats Manual RGBASM(5)

; Prints "%0010 + $3 == 5"
PRINTLN "{#05b:X} + {#x:Y} == {d:SUM}"

rsset 32
DEF PERCENT rb 1 ; Same with offset constants
DEF VALUE = 20
DEF RESULT = MUL(20.0, 0.32)
; Prints "32% of 20 = 6.40"
PRINTLN "{d:PERCENT}% of {d:VALUE} = {f:RESULT}"

DEF WHO EQUS STRLWR("WORLD")
; Prints "Hello world!"
PRINTLN "Hello {s:WHO}!"

Although, for these examples, STRFMT would be more appropriate; see “String expressions” below.

EXPRESSIONS
An expression can be composed of many things. Numeric expressions are always evaluated using signed
32-bit math. Zero is considered to be the only "false" number, all non-zero numbers (including negative)
are "true".

An expression is said to be "constant" if rgbasm knows its value. This is generally always the case, unless
a label is involved, as explained in the “SYMBOLS” section. However, some operators can be constant
even with non-constant operands, as explained in “Operators” below.

The instructions in the macro-language generally require constant expressions.

Numeric formats
There are a number of numeric formats.

Format type Possible prefixes Accepted characters
Decimal none 0123456789
Hexadecimal $, 0x, 0X 0123456789ABCDEF
Octal &, 0o, 0O 01234567
Binary %, 0b, 0B 01
Fixed-point none 01234.56789
Precise fixed-point none 12.34q8
Character constant none ’ABYZ’
Game Boy graphics ` 0123

Underscores are also accepted in numbers, except at the beginning of one. This can be useful for grouping
digits, like 123_456 or %1100_1001.

The "character constant" form yields the value the character maps to in the current charmap. For example,
by default (refer to ascii(7)) ‘’A’’ yields 65. A character constant must represent a single value, so it cannot
include multiple characters, or characters which map to multiple values. See “Character maps” for infor-
mation on charmaps, and “String expressions” for information on escape characters allowed in character
constants.

The last one, Game Boy graphics, is quite interesting and useful. After the backtick, 8 digits between 0 and
3 are expected, corresponding to pixel values. The resulting value is the two bytes of tile data that would
produce that row of pixels. For example, ‘`01012323’ is equivalent to ‘$0F55’.

You can also use symbols, which are implicitly replaced with their value.

Operators
You can use these operators in numeric expressions (listed from highest to lowest precedence):

Operator Meaning

Debian September 30, 2025 3

RGBASM(5) File Formats Manual RGBASM(5)

() Grouping
FUNC() Built-in function call
∗∗ Exponentiation
+ - ˜ ! Unary plus, minus (negation), complement (bitwise negation), and Boolean

negation
∗ / % Multiplication, division, and modulo (remainder)
<< >> >>> Bit shifts (left, sign-extended right, zero-extended right)
& | ˆ Bitwise AND/OR/XOR
+ - Addition and subtraction
== != < > <= >=Comparisons
&& Boolean AND
|| Boolean OR

‘∗∗’ raises a number to a non-negative power. It is the only right-associative operator, meaning that p ∗∗
q ∗∗ r is equal to p ∗∗ (q ∗∗ r), not (p ∗∗ q) ∗∗ r. All other binary operators are left-associa-
tive.

‘˜’ complements a value by inverting all 32 of its bits.

‘%’ is used to get the remainder of the corresponding division, so that x / y ∗ y + x % y == x is
always true. The result has the same sign as the divisor. This makes x % y equal to (x + y) % y or
(x - y) % y.

Shifting works by shifting all bits in the left operand either left (‘<<’) or right (‘>>’) by the right operand’s
amount. When shifting left, all newly-inserted bits are reset; when shifting right, they are copies of the
original most significant bit instead. This makes ‘a << b’ and ‘a >> b’ equivalent to multiplying and divid-
ing by 2 to the power of b, respectively.

Comparison operators return 0 if the comparison is false, and 1 otherwise.

Unlike in many other languages, and for technical reasons, rgbasm still evaluates both operands of ‘&&’
and ‘||’.

The operators ‘&&’ and ‘&’ with a zero constant as either operand will be constant 0, and ‘||’ with a non-
zero constant as either operand will be constant 1, even if the other operand is non-constant.

‘!’ returns 1 if the operand was 0, and 0 otherwise. Even a non-constant operand with any non-zero bits
will return 0.

Integer functions
Besides operators, there are also some functions which have more specialized uses.

Name Operation
HIGH(n) Equivalent to ‘(n & $FF00) >> 8’.
LOW(n) Equivalent to n & $FF. delim $$
BITWIDTH(n) Returns the number of bits necessary to represent n. Some useful formulas:

BITWIDTH(n) - 1 equals $ log sub 2 (n) $, BITWIDTH(n - 1) equals $ log sub 2 (n
) $, and 32 - BITWIDTH(n) equals $roman clz (n)$.

TZCOUNT(n) Returns $roman ctz (n)$, the count of trailing zero bits at the end of the binary
representation of n.

delim off

Fixed-point expressions
Fixed-point numbers are technically just integers, but conceptually they have a decimal point at a fixed lo-
cation (hence the name). This gives them increased precision, at the cost of a smaller range, while remain-
ing far cheaper to manipulate than floating-point numbers (which rgbasm does not support).

The default precision of all fixed-point numbers is 16 bits, meaning the lower 16 bits are used for the frac-
tional part; so they count in 65536ths of 1.0. This precision can be changed with the -Q command-line op-
tion, and/or by OPT Q (see “Changing options while assembling”). An individual fixed-point literal can
specify its own precision, overriding the current default, by appending a “q” followed by the number of
fractional bits: for example, 1234.5q8 is equal to $0004d2_80 delim $$ ($= 1234.5 ∗ 2 sup 8$).

Debian September 30, 2025 4

RGBASM(5) File Formats Manual RGBASM(5)

Since fixed-point values are still just integers, you can use them in normal integer expressions. You can
easily truncate a fixed-point number into an integer by shifting it right by the number of fractional bits. It
follows that you can convert an integer to a fixed-point number by shifting it left that same amount.

Note that the current number of fractional bits can be computed as TZCOUNT(1.0).

The following functions are designed to operate with fixed-point numbers:

Name Operation
DIV(x , y) Fixed-point division
MUL(x , y) Fixed-point multiplication
FMOD(x , y) Fixed-point modulo
POW(x , y) $x sup y$
LOG(x , y) Logarithm of x to the base y
ROUND(x) Round x to the nearest integer
CEIL(x) Round x up to the nearest integer
FLOOR(x) Round x down to the nearest integer
SIN(x) Sine of x
COS(x) Cosine of x
TAN(x) Tangent of x
ASIN(x) Inverse sine of x
ACOS(x) Inverse cosine of x
ATAN(x) Inverse tangent of x
ATAN2(y , x) Angle between (x, y) and $(1, 0)$

delim off

There are no functions for fixed-point addition and subtraction, because the ‘+’ and ‘-’ operators can add
and subtract pairs of fixed-point operands.

Note that some operators or functions are meaningful when combining integers and fixed-point val-
ues. For example, 2.0 ∗ 3 is equivalent to MUL(2.0, 3.0), and 6.0 / 2 is equivalent to
DIV(6.0, 2.0). Be careful and think about what the operations mean when doing this sort of
thing.

All of these fixed-point functions can take an optional final argument, which is the precision to use for that
one operation. For example, MUL(6.0q8, 7.0q8, 8) will evaluate to 42.0q8 no matter what value
is set as the current Q option. rgbasm does not check precisions for consistency, so nonsensical input like
MUL(4.2q8, 6.9q12, 16) will produce a nonsensical (but technically correct) result: “garbage in,
garbage out”.

The FMOD function is used to get the remainder of the corresponding fixed-point division, so that
MUL(DIV(x, y), y) + FMOD(x, y) == x is always true. The result has the same sign as the
dividend; this is the opposite of how the integer modulo operator ‘%’ works!

The trigonometry functions (SIN, COS, TAN, etc) are defined in terms of a circle divided into 1.0 “turns”
delim $$ (equal to $2 pi$ radians, or 360 degrees). delim off

These functions are useful for automatic generation of various tables. For example:

; Generate a table of 128 sine values
; from sin(0.0) to sin(0.5) excluded,
; with amplitude scaled from [-1.0, 1.0] to [0.0, 128.0].
FOR angle, 0.0, 0.5, 0.5 / 128

db MUL(SIN(angle) + 1.0, 128.0 / 2) >> 16
ENDR

String expressions
The most basic string expression is any number of characters contained in double quotes ("for
instance"). The backslash character ‘\’ is special in that it causes the character following it to be
“escaped”, meaning that it is treated differently from normal. There are a number of escape sequences you
can use within a string:

Debian September 30, 2025 5

RGBASM(5) File Formats Manual RGBASM(5)

Sequence Meaning
‘\\ Backslash (escapes the escape character itself)’
‘\" Double quote (does not terminate a string)’
‘\’ Single quote (does not terminate a character literal)’
‘\{ Open curly brace (does not start interpolation)’
‘\} Close curly brace (does not end interpolation)’
‘\n Newline (ASCII $0A)’
‘\r Carriage return (ASCII $0D)’
‘\t Tab (ASCII $09)’
‘\0 Null (ASCII $00)’

Multi-line strings are contained in triple quotes ("""for instance"""). Escape sequences work the
same way in multi-line strings; however, literal newline characters will be included as-is, without needing
to escape them with ‘\r’ or ‘\n’.

Raw strings are prefixed by a hash ‘#’. Inside them, backslashes and braces are treated like regular charac-
ters, so they will not be expanded as macro arguments, interpolated symbols, or escape sequences. For ex-
ample, the raw string #"\t\1{s}\" is equivalent to the regular string "\\t\\1\{s}\\". (Note that
this prevents raw strings from including the double quote character.) Raw strings also may be contained in
triple quotes for them to be multi-line, so they can include literal newline or quote characters (although still
not three quotes in a row).

You can use the ‘++’ operator to concatenate two strings. "str" ++ "ing" is equivalent to
"string", or to STRCAT("str", "ing").

You can use the ‘===’ and ‘!==’ operators to compare two strings. "str" === "ing" is equivalent to
STRCMP("str", "ing") == 0, and "str" !== "ing" is equivalent to STRCMP("str",
"ing") != 0.

The following functions operate on string expressions, and return strings themselves.

Name Operation
STRCAT(strs...) Concatenates strs.
STRUPR(str) Returns str with all ASCII letters (a-z) in uppercase.
STRLWR(str) Returns str with all ASCII letters (A-Z) in lowercase.
STRSLICE(str , start , stop)Returns a substring of str starting at start and ending at stop

(exclusive). If stop is not specified, the substring continues to the end of
str.

STRRPL(str , old , new) Returns str with each non-overlapping occurrence of the substring old
replaced with new.

STRFMT(fmt , args...) Returns the string fmt with each %spec pattern replaced by interpolating
the format spec (using the same syntax as “Symbol interpolation”) with its
corresponding argument in args (‘%%’ is replaced by the ‘%’ character).

STRCHAR(str , idx) Returns the substring of str for the charmap entry at idx with the current
charmap. (idx counts charmap entries, not characters.)

REVCHAR(vals...) Returns the string that is mapped to vals with the current charmap. If there
is no unique charmap entry for vals, an error occurs.

READFILE(name , max) Returns the contents of the file name as a string. Reads up to max bytes, or
the entire contents if max is not specified. If the file isn’t found in the current
directory, the include-path list passed to rgbasm(1)’s -I option on the
command line will be searched.

The following functions operate on string expressions, but return integers.

Name Operation
STRLEN(str) Returns the number of characters in str.

Debian September 30, 2025 6

RGBASM(5) File Formats Manual RGBASM(5)

STRCMP(str1 , str2)Compares str1 and str2 according to ASCII ordering of their characters.
Returns -1 if str1 is lower than str2, 1 if str1 is greater than str2, or 0 if
they match.

STRFIND(str , sub)Returns the first index of sub in str, or -1 if it’s not present.
STRRFIND(str , sub)Returns the last index of sub in str, or -1 if it’s not present.
BYTELEN(str) Returns the number of bytes in str. (Non-ASCII characters can be multiple

bytes.)
STRBYTE(str , idx)Returns the byte value at idx in str.
INCHARMAP(str) Returns 1 if str has an entry in the current charmap, or 0 otherwise.
CHARLEN(str) Returns the number of charmap entries in str with the current charmap.
CHARCMP(str1 , str2)Compares str1 and str2 according to their charmap entry values with the

current charmap. Returns -1 if str1 is lower than str2, 1 if str1 is greater
than str2, or 0 if they match.

CHARSIZE(char) Returns how many values are in the charmap entry for char with the current
charmap.

CHARVAL(char , idx)Returns the value at idx of the charmap entry for char. If idx is not
specified, char must have a single value, which is returned.

Note that indexes count starting from 0 at the beginning, or from -1 at the end. The characters of a string
are counted by STRLEN; the charmap entries of a string are counted by CHARLEN; and the values of a
charmap entry are counted by CHARSIZE.

Character maps
When writing text strings that are meant to be displayed on the Game Boy, the character encoding in the
ROM may need to be different than the source file encoding. For example, the tiles used for uppercase let-
ters may be placed starting at tile index 128, which differs from ASCII starting at 65.

Character maps allow mapping strings or character literals to arbitrary sequences of numbers:

CHARMAP "A", 42
CHARMAP ’:)’, 39
CHARMAP "
", 13, 10
CHARMAP ’€’, $20ac

This would result in db "Amen :)
" being equivalent to db 42, 109, 101, 110, 32,
39, 13, 10, and dw "25€" being equivalent to dw 50, 53, $20ac.

Any characters in a string without defined mappings will be copied directly, using the source file’s encoding
of characters to bytes.

It is possible to create multiple character maps and then switch between them as desired. This can be used
to encode debug information in ASCII and use a different encoding for other purposes, for example. Ini-
tially, there is one character map called ‘main’ and it is automatically selected as the current character map
from the beginning. There is also a character map stack that can be used to save and restore which charac-
ter map is currently active.

Command Meaning
NEWCHARMAP name Creates a new, empty character map called name and switches to it.
NEWCHARMAP name, basename Creates a new character map called name, copied from character

map basename, and switches to it.
SETCHARMAP name Switch to character map name.
PUSHC Push the current character map onto the stack.
PUSHC name Push the current character map onto the stack and switch to character

map name.
POPC Pop a character map off the stack and switch to it.

Note: Modifications to a character map take effect immediately from that point onward.

Debian September 30, 2025 7

RGBASM(5) File Formats Manual RGBASM(5)

Other functions
There are a few other functions that do things beyond numeric or string operations:

Name Operation
DEF(symbol) Returns 1 if symbol has been defined, 0 otherwise. String constants are not ex-

panded within the parentheses.
ISCONST(arg) Returns 1 if arg’s value is known by RGBASM (e.g. if it can be an argument to IF),

or 0 if only RGBLINK can compute its value.
BANK(arg) Returns a bank number. If arg is the symbol @, this function returns the bank of the

current section. If arg is a string, it returns the bank of the section that has that
name. If arg is a label, it returns the bank number the label is in. The result may be
constant if rgbasm is able to compute it.

SECTION(symbol) Returns the name of the section that symbol is in. symbol must have been defined
already.

SIZEOF(arg) If arg is a string, this function returns the size of the section named arg. If arg is
a section type keyword, it returns the size of that section type. The result is not con-
stant, since only RGBLINK can compute its value. If arg is an 8-bit or 16-bit regis-
ter, it returns the size of that register.

STARTOF(arg) If arg is a string, this function returns the starting address of the section named arg.
If arg is a section type keyword, it returns the starting address of that section type.
The result is not constant, since only RGBLINK can compute its value.

SECTIONS
Before you can start writing code, you must define a section. This tells the assembler what kind of infor-
mation follows and, if it is code, where to put it.

SECTION name, type
SECTION name, type, options
SECTION name, type[addr]
SECTION name, type[addr], options

name is a string enclosed in double quotes, and can be a new name or the name of an existing section. If
the type doesn’t match, an error occurs. All other sections must have a unique name, even in different
source files, or the linker will treat it as an error.

Possible section types are as follows:

ROM0 A ROM section. addr can range from $0000 to $3FFF, or $0000 to $7FFF if tiny ROM mode is
enabled in the linker.

ROMX A banked ROM section. addr can range from $4000 to $7FFF. bank can range from 1 to 511.
Becomes an alias for ROM0 if tiny ROM mode is enabled in the linker.

VRAM A banked video RAM section. addr can range from $8000 to $9FFF. bank can be 0 or 1, but
bank 1 is unavailable if DMG mode is enabled in the linker.

SRAM A banked external (save) RAM section. addr can range from $A000 to $BFFF. bank can range
from 0 to 15.

WRAM0 A general-purpose RAM section. addr can range from $C000 to $CFFF, or $C000 to $DFFF if
WRAM0 mode is enabled in the linker.

WRAMX A banked general-purpose RAM section. addr can range from $D000 to $DFFF. bank can
range from 1 to 7. Becomes an alias for WRAM0 if WRAM0 mode is enabled in the linker.

OAM An object attribute RAM section. addr can range from $FE00 to $FE9F.

HRAM A high RAM section. addr can range from $FF80 to $FFFE.

Since RGBDS produces ROMs, code and data can only be placed in ROM0 and ROMX sections. To put
some in RAM, have it stored in ROM, and copy it to RAM.

Debian September 30, 2025 8

RGBASM(5) File Formats Manual RGBASM(5)

options are comma-separated and may include:

BANK[bank]
Specify which bank for the linker to place the section in. See above for possible values for bank,
depending on type.

ALIGN[align, offset]
Place the section at an address whose align least-significant bits are equal to offset. Note that
ALIGN[align] is a shorthand for ALIGN[align, 0]. This option can be used with [addr], as
long as they don’t contradict each other. It’s also possible to request alignment in the middle of a
section; see “Requesting alignment” below.

If [addr] is not specified, the section is considered “floating”; the linker will automatically calculate an ap-
propriate address for the section. Similarly, if BANK[bank] is not specified, the linker will automatically
find a bank with enough space.

Sections can also be placed by using a linker script file. The format is described in rgblink(5). They allow
the user to place floating sections in the desired bank in the order specified in the script. This is useful if
the sections can’t be placed at an address manually because the size may change, but they have to be to-
gether.

Section examples:

SECTION "Cool Stuff", ROMX

This switches to the section called “CoolStuff”, creating it if it doesn’t already exist. It can end up in any
ROM bank. Code and data may follow.

If it is needed, the the base address of the section can be specified:

SECTION "Cool Stuff", ROMX[$4567]

An example with a fixed bank:

SECTION "Cool Stuff", ROMX[$4567], BANK[3]

And if you want to force only the section’s bank, and not its position within the bank, that’s also possible:

SECTION "Cool Stuff", ROMX, BANK[7]

Alignment examples: The first one could be useful for defining an OAM buffer to be DMA’d, since it must
be aligned to 256 bytes. The second could also be appropriate for GBC HDMA, or for an optimized copy
code that requires alignment.

SECTION "OAM Data", WRAM0, ALIGN[8] ; align to 256 bytes
SECTION "VRAM Data", ROMX, BANK[2], ALIGN[4] ; align to 16 bytes

The current section can be ended without starting a new section by using ENDSECTION. This directive
will clear the section context, so you can no longer write code until you start another section. It can be use-
ful to avoid accidentally defining code or data in the wrong section.

Section stack
POPS and PUSHS provide the interface to the section stack. The number of entries in the stack is limited
only by the amount of memory in your machine.

PUSHS will push the current section context on the section stack. POPS can then later be used to restore it.
Useful for defining sections in included files when you don’t want to override the section context at the
point the file was included.

PUSHS can also take the same arguments as SECTION, in order to push the current section context and de-
fine a new section at the same time:

SECTION "Code", ROM0
Function:

ld a, 42

Debian September 30, 2025 9

RGBASM(5) File Formats Manual RGBASM(5)

PUSHS "Variables", WRAM0
wAnswer: db

POPS
ld [wAnswer], a

RAM code
Sometimes you want to have some code in RAM. But then you can’t simply put it in a RAM section, you
have to store it in ROM and copy it to RAM at some point.

This means the code (or data) will not be stored in the place it gets executed. Luckily, LOAD blocks are the
perfect solution to that. Here’s an example of how to use them:

SECTION "LOAD example", ROMX
CopyCode:

ld de, RAMCode
ld hl, RAMLocation
ld c, RAMCode.end - RAMCode

.loop
ld a, [de]
inc de
ld [hli], a
dec c
jr nz, .loop
ret

RAMCode:
LOAD "RAM code", WRAM0

RAMLocation:
ld hl, .string
ld de, $9864

.copy
ld a, [hli]
ld [de], a
inc de
and a
jr nz, .copy
ret

.string
db "Hello World!\0"

ENDL
.end

A LOAD block feels similar to a SECTION declaration because it creates a new one. All data and code
generated within such a block is placed in the current section like usual, but all labels are created as if they
were placed in this newly-created section.

In the example above, all of the code and data will end up in the “LOAD example” section. You will notice
the ‘RAMCode’ and ‘RAMLocation’ labels. The former is situated in ROM, where the code is stored, the
latter in RAM, where the code will be loaded.

You cannot nest LOAD blocks, nor can you change or stop the current section within them.

The current LOAD block can be ended by using ENDL. This directive is only necessary if you want to re-
sume writing code in its containing ROM section. Any of LOAD, SECTION, ENDSECTION, or POPS
will end the current LOAD block before performing its own function.

Debian September 30, 2025 10

RGBASM(5) File Formats Manual RGBASM(5)

LOAD blocks can use the UNION or FRAGMENT modifiers as described in “Unionized sections” below.

Unionized sections
When you’re tight on RAM, you may want to define overlapping static memory allocations, as explained in
the “Allocating overlapping spaces in RAM” section. However, a UNION only works within a single file,
so it can’t be used e.g. to define temporary variables across several files, all of which use the same statically
allocated memory. Unionized sections solve this problem. To declare an unionized section, add a UNION
keyword after the SECTION one; the declaration is otherwise not different. Unionized sections follow
some different rules from normal sections:

• The same unionized section (i.e. having the same name) can be declared several times per
rgbasm invocation, and across several invocations. Different declarations are treated and
merged identically whether within the same invocation, or different ones.

• If one section has been declared as unionized, all sections with the same name must be declared
unionized as well.

• All declarations must have the same type. For example, even if rgblink(1)’s -w flag is used,
WRAM0 and WRAMX types are still considered different.

• Different constraints (alignment, bank, etc.) can be specified for each unionized section declara-
tion, but they must all be compatible. For example, alignment must be compatible with any
fixed address, all specified banks must be the same, etc.

• Unionized sections cannot have type ROM0 or ROMX.

Different declarations of the same unionized section are not appended, but instead overlaid on top of each
other, just like “Allocating overlapping spaces in RAM”. Similarly, the size of an unionized section is the
largest of all its declarations.

Section fragments
Section fragments are sections with a small twist: when several of the same name are encountered, they are
concatenated instead of producing an error. This works within the same file (paralleling the behavior
"plain" sections has in previous versions), but also across object files. To declare an section fragment, add a
FRAGMENT keyword after the SECTION one; the declaration is otherwise not different. However, simi-
larly to “Unionized sections”, some rules must be followed:

• If one section has been declared as fragment, all sections with the same name must be declared
fragments as well.

• All declarations must have the same type. For example, even if rgblink(1)’s -w flag is used,
WRAM0 and WRAMX types are still considered different.

• Different constraints (alignment, bank, etc.) can be specified for each section fragment declara-
tion, but they must all be compatible. For example, alignment must be compatible with any
fixed address, all specified banks must be the same, etc.

• A section fragment may not be unionized; after all, that wouldn’t make much sense.

When RGBASM merges two fragments, the one encountered later is appended to the one encountered ear-
lier.

When RGBLINK merges two fragments, the one whose file was specified last is appended to the one whose
file was specified first. For example, assuming bar.o, baz.o, and foo.o all contain a fragment with the
same name, the command

rgblink -o rom.gb baz.o foo.o bar.o
would produce the fragment from baz.o first, followed by the one from foo.o, and the one from bar.o
last.

Fragment literals
Fragment literals are useful for short blocks of code or data that are only referenced once. They are section
fragments created by surrounding instructions or directives with ‘[[’ double brackets ‘]]’, without a sepa-
rate SECTION FRAGMENT declaration.

Debian September 30, 2025 11

RGBASM(5) File Formats Manual RGBASM(5)

The content of a fragment literal becomes a SECTION FRAGMENT, sharing the same name and bank as its
parent ROM section, but without any other constraints. The parent section also becomes a FRAGMENT if it
was not one already, so that it can be merged with its fragment literals. RGBLINK merges the fragments in
no particular order.

A fragment literal can take the place of any 16-bit integer constant n16 from the gbz80(7) documentation,
as well as a DW item. The fragment literal then evaluates to its starting address. For example, you can
CALL or JP to a fragment literal.

This code using named labels:

DataTable:
dw First
dw Second
dw Third

First: db 1
Second: db 4
Third: db 9
Routine:

push hl
ld hl, Left
jr z, .got_it
ld hl, Right

.got_it
call .print
pop hl
ret

.print:
ld de, $1003
ld bc, STARTOF(VRAM)
jp Print

Left: db "left\0"
Right: db "right\0"

is equivalent to this code using fragment literals:

DataTable:
dw [[db 1]]
dw [[db 4]]
dw [[db 9]]

Routine:
push hl
ld hl, [[db "left\0"]]
jr z, .got_it
ld hl, [[db "right\0"]]

.got_it
call [[

ld de, $1003
ld bc, STARTOF(VRAM)
jp Print

]]
pop hl
ret

The difference is that the example using fragment literals does not declare a particular order for its pieces.

Fragment literals can be arbitrarily nested, so extreme use cases are technically possible. This code using
named labels:

Debian September 30, 2025 12

RGBASM(5) File Formats Manual RGBASM(5)

dw FortyTwo
FortyTwo:

call Sub1
jr Sub2

Sub1:
ld a, [Twenty]
ret

Twenty: db 20
Sub2:

jp Sub3
Sub3:

call Sub1
inc a
add a
ret

is equivalent to this code using fragment literals:

dw [[
call [[

Sub1: ld a, [[[db 20]]] :: ret
]]
jr [[

jp [[call Sub1 :: inc a :: add a :: ret]]
]]

]]

SYMBOLS
RGBDS supports several types of symbols:

Label Numeric symbol designating a memory location. May or may not have a value known at assembly
time.

Constant Numeric symbol whose value has to be known at assembly time.

Macro A block of rgbasm code that can be invoked later.

String A text string that can be expanded later, similarly to a macro.

Symbol names can contain ASCII letters, numbers, underscores ‘_’, hashes ‘#’, dollar signs ‘$’, and at
signs ‘@’. However, they must begin with either a letter or an underscore. Additionally, label names can
contain up to a single dot ‘.’, which may not be the first character.

A symbol cannot have the same name as a reserved keyword, unless its name is a “raw identifier” prefixed
by a hash ‘#’. For example, #load denotes a symbol named load, and #LOAD denotes a different sym-
bol named LOAD; in both cases the ‘#’ prevents them from being treated as the keyword LOAD.

Labels
One of the assembler’s main tasks is to keep track of addresses for you, so you can work with meaningful
names instead of “magic” numbers. Labels enable just that: a label ties a name to a specific location within
a section. A label resolves to a bank and address, determined at the same time as its parent section’s (see
further in this section).

A label is defined by writing its name at the beginning of a line, followed by one or two colons, without any
whitespace between the label name and the colon(s). Declaring a label (global or local) with two colons
‘::’ will define and EXPORT it at the same time. (See “Exporting and importing symbols” below). When
defining a local label, the colon can be omitted, and rgbasm will act as if there was only one.

A label is said to be local if its name contains a dot ‘.’; otherwise, it is said to be global (not to be mistaken
with “exported”, explained in “Exporting and importing symbols” below). More than one dot in label
names is not allowed.

Debian September 30, 2025 13

RGBASM(5) File Formats Manual RGBASM(5)

For convenience, local labels can use a shorthand syntax: when a symbol name starting with a dot is found
(for example, inside an expression, or when declaring a label), then the current “label scope” is implicitly
prepended.

Defining a global label sets it as the current “label scope”, until the next global label definition, or the end
of the current section.

Here are some examples of label definitions:

GlobalLabel:
AnotherGlobal:
.locallabel ; This defines "AnotherGlobal.locallabel"
.another_local:
AnotherGlobal.with_another_local:
ThisWillBeExported:: ; Note the two colons
ThisWillBeExported.too::

In a numeric expression, a label evaluates to its address in memory. (To obtain its bank, use the BANK()
function described in “Other functions”). For example, given the following, ld de, vPlayerTiles
would be equivalent to ld de, $80C0 assuming the section ends up at $80C0:

SECTION "Player tiles", VRAM
vPlayerTiles:

ds 6 ∗ 16
.end

A label’s location (and thus value) is usually not determined until the linking stage, so labels usually cannot
be used as constants. However, if the section in which the label is defined has a fixed base address, its value
is known at assembly time.

Also, while rgbasm obviously can compute the difference between two labels if both are constant, it is
also able to compute the difference between two non-constant labels if they both belong to the same sec-
tion, such as PlayerTiles and PlayerTiles.end above.

Anonymous labels
Anonymous labels are useful for short blocks of code. They are defined like normal labels, but without a
name before the colon. Anonymous labels are independent of label scoping, so defining one does not
change the scoped label, and referencing one is not affected by the current scoped label.

Anonymous labels are referenced using a colon ‘:’ followed by pluses ‘+’ or minuses ‘-’. Thus :+ refer-
ences the next one after the expression, :++ the one after that; :- references the one before the expression;
and so on.

ld hl, :++
: ld a, [hli] ; referenced by "jr nz"

ldh [c], a
dec c
jr nz, :-
ret

: ; referenced by "ld hl"
dw $7FFF, $1061, $03E0, $58A5

Variables
An equal sign ‘=’ is used to define mutable numeric symbols. Unlike the other symbols described below,
variables can be redefined. This is useful for internal symbols in macros, for counters, etc.

DEF ARRAY_SIZE EQU 4
DEF COUNT = 2
DEF COUNT = 3
DEF COUNT = ARRAY_SIZE + COUNT

Debian September 30, 2025 14

RGBASM(5) File Formats Manual RGBASM(5)

DEF COUNT ∗= 2
; COUNT now has the value 14

Note that colons ‘:’ following the name are not allowed.

Variables can be conveniently redefined by compound assignment operators like in C:

Operator Meaning
+= -= Compound plus/minus
∗= /= %=Compound multiply/divide/modulo
<<= >>= Compound shift left/right
&= |= ˆ=Compound and/or/xor

Examples:

DEF x = 10
DEF x += 1 ; x == 11
DEF y = x - 1 ; y == 10
DEF y ∗= 2 ; y == 20
DEF y >>= 1 ; y == 10
DEF x ˆ= y ; x == 1

Declaring a variable with EXPORT DEF or EXPORT REDEF will define and EXPORT it at the same time.
(See “Exporting and importing symbols” below).

Numeric constants
EQU is used to define numeric constant symbols. Unlike ‘=’ above, constants defined this way cannot be
redefined. These constants can be used for unchanging values such as properties of the hardware.

def SCREEN_WIDTH equ 160 ; In pixels
def SCREEN_HEIGHT equ 144

Note that colons ‘:’ following the name are not allowed.

If you really need to, the REDEF keyword will define or redefine a numeric constant symbol. (It can also
be used for variables, although it’s not necessary since they are mutable.) This can be used, for example, to
update a constant using a macro, without making it mutable in general.

def NUM_ITEMS equ 0
MACRO add_item

redef NUM_ITEMS equ NUM_ITEMS + 1
def ITEM_{02x:NUM_ITEMS} equ \1

ENDM
add_item 1
add_item 4
add_item 9
add_item 16
assert NUM_ITEMS == 4
assert ITEM_04 == 16

Declaring a numeric constant with EXPORT DEF or EXPORT REDEF will define and EXPORT it at the
same time. (See “Exporting and importing symbols” below).

Offset constants
The RS group of commands is a handy way of defining structure offsets:

RSRESET
DEF str_pStuff RW 1
DEF str_tData RB 256
DEF str_bCount RB 1
DEF str_SIZEOF RB 0

Debian September 30, 2025 15

RGBASM(5) File Formats Manual RGBASM(5)

The example defines four constants as if by:

DEF str_pStuff EQU 0
DEF str_tData EQU 2
DEF str_bCount EQU 258
DEF str_SIZEOF EQU 259

There are five commands in the RS group of commands:

Command Meaning
RSRESET Equivalent to RSSET 0.
RSSET constexpr Sets the _RS counter to constexpr.
DEF name RB constexprSets name to _RS and then adds constexpr to _RS.
DEF name RW constexprSets name to _RS and then adds constexpr ∗ 2 to _RS.
DEF name RL constexprSets name to _RS and then adds constexpr ∗ 4 to _RS.

If the constexpr argument to RB, RW, or RL is omitted, it’s assumed to be 1.

Note that colons ‘:’ following the name are not allowed.

Declaring an offset constant with EXPORT DEF will define and EXPORT it at the same time. (See
“Exporting and importing symbols” below).

String constants
EQUS is used to define string constant symbols. Wherever the assembler reads a string constant, it gets
expanded: the symbol’s name is replaced with its contents, similarly to #define in the C programming
language. This expansion is disabled in a few contexts: DEF(name), DEF name EQU/=/EQUS/etc
. . ., REDEF name EQU/=/EQUS/etc . . ., FOR name, . . ., PURGE name, and MACRO
name will not expand string constants in their names. Expansion is also disabled if the string constant’s
name is a raw identifier prefixed by a hash ‘#’.

DEF COUNTREG EQUS "[hl+]"
ld a, COUNTREG

DEF PLAYER_NAME EQUS "\"John\""
db PLAYER_NAME

This will be interpreted as:

ld a, [hl+]
db "John"

String constants can also be used to define small one-line macros:

DEF pusha EQUS "push af\npush bc\npush de\npush hl\n"

Note that colons ‘:’ following the name are not allowed.

String constants, like numeric constants, cannot be redefined. However, the REDEF keyword will define or
redefine a string constant symbol. For example:

DEF s EQUS "Hello, "
REDEF s EQUS "{s}world!"
; prints "Hello, world!"
PRINTLN "{s}\n"

String constants can’t be exported or imported.

Important note: When a string constant is expanded, its expansion may contain another string constant,
which will be expanded as well, and may be recursive. If this creates an infinite loop, rgbasm will error
out once a certain depth is reached (see the -r command-line option in rgbasm(1)). The same problem can
occur if the expansion of a string constant invokes a macro, which itself expands.

Debian September 30, 2025 16

RGBASM(5) File Formats Manual RGBASM(5)

Macros
One of the best features of an assembler is the ability to write macros for it. Macros can be called with ar-
guments, and can react depending on input using IF constructs.

MACRO my_macro
ld a, 80
call MyFunc

ENDM

The example above defines my_macro as a new macro. String constants are not expanded within the
name of the macro.

Macros can’t be exported or imported.

Nesting macro definitions is not possible, so this won’t work:

MACRO outer
MACRO inner

PRINTLN "Hello!"
ENDM ; this actually ends the ’outer’ macro...

ENDM ; ...and then this is a syntax error!

But you can work around this limitation using EQUS, so this will work:

MACRO outer
DEF definition EQUS "MACRO inner\nPRINTLN \"Hello!\"\nENDM"
definition
PURGE definition

ENDM

More about how to define and invoke macros is described in “THE MACRO LANGUAGE” below.

Exporting and importing symbols
Importing and exporting of symbols is a feature that is very useful when your project spans many source
files and, for example, you need to jump to a routine defined in another file.

Exporting of symbols has to be done manually, importing is done automatically if rgbasm finds a symbol
it does not know about.

The following will cause symbol1, symbol2 and so on to be accessible to other files during the link
process:

EXPORT symbol1 [, symbol2, . . .]

For example, if you have the following three files:

a.asm:
SECTION "a", WRAM0
LabelA:

b.asm:
SECTION "b", WRAM0
ExportedLabelB1::
ExportedLabelB2:

EXPORT ExportedLabelB2

c.asm:
SECTION "C", ROM0[0]

dw LabelA
dw ExportedLabelB1
dw ExportedLabelB2

Then c.asm can use ExportedLabelB1 and ExportedLabelB2, but not LabelA, so linking them
together will fail:

Debian September 30, 2025 17

RGBASM(5) File Formats Manual RGBASM(5)

$ rgbasm -o a.o a.asm
$ rgbasm -o b.o b.asm
$ rgbasm -o c.o c.asm
$ rgblink a.o b.o c.o
error: Undefined symbol "LabelA"

at c.asm(2)
Linking failed with 1 error

Note also that only exported symbols will appear in symbol and map files produced by rgblink(1).

Purging symbols
PURGE allows you to completely remove a symbol from the symbol table, as if it had never been defined.

DEF value EQU 42
PURGE value
DEF value EQUS "I’m a string now"
ASSERT DEF(value)
PURGE value
ASSERT !DEF(value)

Be very careful when purging symbols that have been referenced in section data, or that have been ex-
ported, because it could result in unpredictable errors if something depends on the missing symbol (for ex-
ample, expressions the linker needs to calculate). Purging labels at all is not recommended.

String constants are not expanded within the symbol names.

Predeclared symbols
The following symbols are defined by the assembler:

Name Type Contents
@ EQU PC value (essentially, the current memory address)
. EQUS The current global label scope
.. EQUS The current local label scope
__SCOPE__ EQUS The innermost current label scope level (empty,., or ..)
_RS = _RS Counter
_NARG EQU Number of arguments passed to macro, updated by SHIFT
__ISO_8601_LOCAL__ EQUS ISO 8601 timestamp (local)
__ISO_8601_UTC__ EQUS ISO 8601 timestamp (UTC)
__UTC_YEAR__ EQU Today’s year
__UTC_MONTH__ EQU Today’s month number, 1–12
__UTC_DAY__ EQU Today’s day of the month, 1–31
__UTC_HOUR__ EQU Current hour, 0–23
__UTC_MINUTE__ EQU Current minute, 0–59
__UTC_SECOND__ EQU Current second, 0–59
__RGBDS_MAJOR__ EQU Major version number of RGBDS
__RGBDS_MINOR__ EQU Minor version number of RGBDS
__RGBDS_PATCH__ EQU Patch version number of RGBDS
__RGBDS_RC__ EQU Release candidate ID of RGBDS, not defined for final releases
__RGBDS_VERSION__ EQUS Version of RGBDS, as printed by rgbasm --version

The current time values will be taken from the SOURCE_DATE_EPOCH environment variable if that is de-
fined as a UNIX timestamp. Refer to the spec at reproducible-builds.org: https://reproducible-
builds.org/docs/source-date-epoch/.

DEFINING DATA
Defining constant data in ROM

DB defines a list of bytes that will be stored in the final image. Ideal for tables and text.

Debian September 30, 2025 18

RGBASM(5) File Formats Manual RGBASM(5)

DB 1,2,3,4,"This is a string"

Alternatively, you can use DW to store a list of words (16-bit) or DL to store a list of double-words/longs
(32-bit). Both of these write their data in little-endian byte order; for example, dw $CAFE is equivalent to
db $FE, $CA and not db $CA, $FE.

Strings are handled a little specially: they first undergo charmap conversion (see “Character maps”), then
each resulting character is output individually. For example, under the default charmap, the following two
lines are identical:

DW "Hello!"
DW "H", "e", "l", "l", "o", "!"

If you do not want this special handling, enclose the string in parentheses.

DS can also be used to fill a region of memory with some repeated values. For example:

; outputs 3 bytes: $AA, $AA, $AA
DS 3, $AA
; outputs 7 bytes: $BB, $CC, $BB, $CC, $BB, $CC, $BB
DS 7, $BB, $CC

You can also use DB, DW and DL without arguments. This works exactly like DS 1, DS 2 and DS 4 re-
spectively. Consequently, no-argument DB, DW and DL can be used in a WRAM0 / WRAMX / HRAM / VRAM /
SRAM section.

Including binary data files
You probably have some graphics, level data, etc. you’d like to include. Use INCBIN to include a raw bi-
nary file as it is. If the file isn’t found in the current directory, the include-path list passed to rgbasm(1)’s
-I option on the command line will be searched.

INCBIN "titlepic.bin"
INCBIN "sprites/hero.bin"

You can also include only part of a file with INCBIN. The example below includes 256 bytes from
data.bin, starting from byte 78.

INCBIN "data.bin", 78, 256

The length argument is optional. If only the start position is specified, the bytes from the start position until
the end of the file will be included.

Statically allocating space in RAM
DS statically allocates a number of empty bytes. This is the preferred method of allocating space in a RAM
section. You can also use DB, DW and DL without any arguments instead (see “Defining constant data in
ROM” below).

DS 42 ; Allocates 42 bytes

Empty space in RAM sections will not be initialized. In ROM sections, it will be filled with the value
passed to the -p command-line option, except when using overlays with -O.

Instead of an exact number of bytes, you can specify ALIGN[align, offset] to allocate however many
bytes are required to align the subsequent data. Thus, ‘DS ALIGN[align, offset], . . .’ is equivalent
to ‘DS n, . . .’ followed by ‘ALIGN[align, offset]’, where n is the minimum value needed to satisfy
the ALIGN constraint (see “Requesting alignment” below). Note that ALIGN[align] is a shorthand for
ALIGN[align, 0].

Allocating overlapping spaces in RAM
Unions allow multiple static memory allocations to overlap, like unions in C. This does not increase the
amount of memory available, but allows re-using the same memory region for different purposes.

A union starts with a UNION keyword, and ends at the corresponding ENDU keyword. NEXTU separates
each block of allocations, and you may use it as many times within a union as necessary.

Debian September 30, 2025 19

RGBASM(5) File Formats Manual RGBASM(5)

; Let’s say PC == $C0DE here
UNION

; Here, PC == $C0DE
wName:: ds 10
; Now, PC == $C0E8
wNickname:: ds 10
; PC == $C0F2

NEXTU
; PC is back to $C0DE
wHealth:: dw
; PC == $C0E0
wLives:: db
; PC == $C0E1
ds 7
; PC == $C0E8
wBonus:: db
; PC == $C0E9

NEXTU
; PC is back to $C0DE again
wVideoBuffer: ds 16
; PC == $C0EE

ENDU
; Afterward, PC == $C0F2

In the example above, ‘wName, wHealth’, and ‘wVideoBuffer’ all have the same value; so do ‘wNickname’
and ‘wBonus’. Thus, keep in mind that ld [wHealth], a assembles to the exact same thing as ld
[wName], a.

This whole union’s total size is 20 bytes, the size of the largest block (the first one, containing ‘wName’
and ‘wNickname’).

Unions may be nested, with each inner union’s size being determined as above, and affecting its outer union
like any other allocation.

Unions may be used in any section, but they may only contain space-allocating directives like DS (see
“Statically allocating space in RAM”).

Requesting alignment
While ALIGN as presented in “SECTIONS” is often useful as-is, sometimes you instead want a particular
piece of data (or code) in the middle of the section to be aligned. This is made easier through the use of
mid-section ALIGN align, offset. It will retroactively alter the section’s attributes to ensure that the
location the ALIGN directive is at, has its align lower bits equal to offset.

If the constraint cannot be met (for example because the section is fixed at an incompatible address), an er-
ror is produced. Note that ALIGN align is a shorthand for ALIGN align, 0.

There may be times when you don’t just want to specify an alignment constraint at the current location, but
also skip ahead until the constraint can be satisfied. In that case, you can use DS ALIGN[align,
offset] to allocate however many bytes are required to align the subsequent data.

If the constraint cannot be met by skipping any amount of space, an error is produced. Note that
ALIGN[align] is a shorthand for ALIGN[align, 0].

THE MACRO LANGUAGE
Invoking macros

A macro is invoked by using its name at the beginning of a line, like a directive, followed by any comma-
separated arguments.

Debian September 30, 2025 20

RGBASM(5) File Formats Manual RGBASM(5)

add a, b
ld sp, hl
my_macro ; This will be expanded
sub a, 87
my_macro 42 ; So will this
ret c
my_macro 1, 2 ; And this

After rgbasm has read the macro invocation line, it will expand the body of the macro (the lines between
MACRO and ENDM) in its place.

Important note: When a macro body is expanded, its expansion may contain another macro invocation,
which will be expanded as well, and may be recursive. If this creates an infinite loop, rgbasm will error
out once a certain depth is reached (see the -r command-line option in rgbasm(1)). The same problem can
occur if the expansion of a macro then expands a string constant, which itself expands.

It’s possible to pass arguments to macros as well!

MACRO lb
ld \1, (\2) << 8 | (\3)

ENDM
lb hl, 20, 18 ; Expands to "ld hl, ((20) << 8) | (18)"
lb de, 3 + 1, NUM∗∗2 ; Expands to "ld de, ((3 + 1) << 8) | (NUM∗∗2)"

You expand the arguments inside the macro body by using the escape sequences \1 through \9, \1 being
the first argument, \2 being the second, and so on. Since there are only nine digits, you can only use the
first nine macro arguments that way. To use the rest, you put the argument number in angle brackets, like
\<10>.

This bracketed syntax supports decimal numbers and numeric symbols, where negative values count from
the last argument. For example, \<_NARG> or \<-1> will get the last argument.

Other macro arguments and symbol interpolations will also be expanded inside the angle brackets. For ex-
ample, if ‘\1’ is ‘13’, then \<\1> inside the macro body will expand to \<13>. Or if DEF v10 = 42
and DEF x = 10, then \<v{d:x}> will expand to \<42>.

Macro arguments are passed as string constants, although there’s no need to enclose them in quotes. Thus,
arguments are not evaluated as expressions, but instead are expanded directly inside the macro body. This
means that they support all the escape sequences of strings (see “String expressions” above), as well as
some of their own:

Sequence Meaning
‘\, Comma (does not terminate the argument)’
‘\(Open parenthesis (does not start enclosing argument contents)’
‘\) Close parenthesis (does not end enclosing argument contents)’

Line continuations work as usual inside macros or lists of macro arguments. However, some characters
need to be escaped, as in the following example:

MACRO PrintMacro1
PRINTLN STRCAT(\1)

ENDM
PrintMacro1 "Hello "\, \

"world"
MACRO PrintMacro2

PRINT \1
ENDM

PrintMacro2 STRCAT("Hello ", \
"world\n")

Debian September 30, 2025 21

RGBASM(5) File Formats Manual RGBASM(5)

The comma in PrintMacro1 needs to be escaped to prevent it from starting another macro argument.
The comma in PrintMacro2 does not need escaping because it is inside parentheses, similar to macro
arguments in the C programming language. The backslash in ‘\n’ also does not need escaping because
quoted string literals work as usual inside macro arguments.

Since macro arguments are expanded directly, it’s often a good idea to put parentheses around them if
they’re meant as part of a numeric expression. For instance, consider the following:

MACRO print_double
PRINTLN \1 ∗ 3

ENDM
print_double 1 + 2

The body will expand to PRINTLN 1 + 2 ∗ 3, which will print 7 and not 9 as you might have ex-
pected.

The SHIFT directive is only available inside macro bodies. It shifts the argument numbers by one to the
left, so what was \2 is now \1, what was \3 is now \2, and so forth. (What was \1 is no longer accessi-
ble, so _NARG is decreased by 1.)

SHIFT can also take an integer parameter to shift that many times instead of once. A negative parameter
will shift the arguments to the right, which can regain access to previously shifted ones.

SHIFT is especially useful in REPT loops to iterate over different arguments, evaluating the same loop
body each time.

There are some escape sequences which are only valid inside the body of a macro:

Sequence Meaning
‘\1’ – ‘\9’ The 1st–9th macro argument
\<...> Further macro arguments
‘\# All _NARG macro arguments, separated by commas’
‘\@ Unique symbol name affix (see below)’

The \@ escape sequence is often useful in macros which define symbols. Suppose your macro expands to a
loop of assembly code:

MACRO loop_c_times
xor a, a

.loop
ld [hl+], a
dec c
jr nz, .loop

ENDM

If you use this macro more than once in the same label scope, it will define .loop twice, which is an error.
To work around this problem, you can use \@ as a label suffix:

MACRO loop_c_times_fixed
xor a, a

.loop\@
ld [hl+], a
dec c
jr nz, .loop\@

ENDM

This will expand to a different value in each invocation, similar to gensym in the Lisp programming lan-
guage.

\@ also works in REPT blocks, expanding to a different value in each iteration.

Debian September 30, 2025 22

RGBASM(5) File Formats Manual RGBASM(5)

Automatically repeating blocks of code
Suppose you want to unroll a time-consuming loop without copy-pasting it. REPT is here for that purpose.
Everything between REPT and the matching ENDR will be repeated a number of times just as if you had
done a copy/paste operation yourself. The following example will assemble add a, c four times:

REPT 4
add a, c

ENDR

You can also use REPT to generate tables on the fly:

; Generate a table of square values from 0∗∗2 = 0 to 100∗∗2 = 10000
DEF x = 0
REPT 101

dw x ∗ x
DEF x += 1

ENDR

As in macros, you can also use the escape sequence \@. REPT blocks can be nested.

A common pattern is to repeat a block for each value in some range. FOR is simpler than REPT for that
purpose. Everything between FOR and the matching ENDR will be repeated for each value of a given sym-
bol. String constants are not expanded within the symbol name. For example, this code will produce a ta-
ble of squared values from 0 to 255:

FOR N, 256
dw N ∗ N

ENDR

It acts just as if you had done:

DEF N = 0
dw N ∗ N

DEF N = 1
dw N ∗ N

DEF N = 2
dw N ∗ N

; ...
DEF N = 255

dw N ∗ N
DEF N = 256

You can customize the range of FOR values, similarly to the range function in the Python programming
language:

Code Range
FOR V, stop V increments from 0 to stop
FOR V, start, stop V increments from start to stop
FOR V, start, stop, stepV goes from start to stop by step

The FOR value will be updated by step until it reaches or exceeds stop, i.e. it covers the half-open range
from start (inclusive) to stop (exclusive). The variable V will be assigned this value at the beginning of
each new iteration; any changes made to it within the FOR loop’s body will be overwritten. So the symbol
V need not be already defined before any iterations of the FOR loop, but it must be a variable (“Variables”)
if so. For example:

FOR V, 4, 25, 5
PRINT "{d:V} "
DEF V ∗= 2

ENDR
PRINTLN "done {d:V}"

Debian September 30, 2025 23

RGBASM(5) File Formats Manual RGBASM(5)

This will print:

4 9 14 19 24 done 29

Just like with REPT blocks, you can use the escape sequence \@ inside of FOR blocks, and they can be
nested.

You can stop a repeating block with the BREAK command. A BREAK inside of a REPT or FOR block will
interrupt the current iteration and not repeat any more. It will continue running code after the block’s
ENDR. For example:

FOR V, 1, 100
PRINT "{d:V}"
IF V == 5

PRINT " stop! "
BREAK

ENDC
PRINT ", "

ENDR
PRINTLN "done {d:V}"

This will print:

1, 2, 3, 4, 5 stop! done 5

Conditionally assembling blocks of code
The four commands IF, ELIF, ELSE, and ENDC let you have rgbasm skip over parts of your code de-
pending on a condition. This is a powerful feature commonly used in macros.

IF NUM < 0
PRINTLN "NUM < 0"

ELIF NUM == 0
PRINTLN "NUM == 0"

ELSE
PRINTLN "NUM > 0"

ENDC

The ELIF (standing for "else if") and ELSE blocks are optional. IF / ELIF / ELSE / ENDC blocks can be
nested.

Note that if an ELSE block is found before an ELIF block, the ELIF block will be ignored. All ELIF
blocks must go before the ELSE block. Also, if there is more than one ELSE block, all of them but the first
one are ignored.

Including other source files
Use INCLUDE to process another assembler file and then return to the current file when done. If the file
isn’t found in the current directory, the include-path list passed to rgbasm(1)’s -I option on the command
line will be searched. You may nest INCLUDE calls infinitely (or until you run out of memory, whichever
comes first).

INCLUDE "irq.inc"

You may also implicitly INCLUDE a file before the source file with the -P option of rgbasm(1).

Printing things during assembly
The PRINT and PRINTLN commands print text and values to the standard output. Useful for debugging
macros, or wherever you may feel the need to tell yourself some important information.

PRINT "Hello world!\n"
PRINTLN "Hello world!"
PRINT _NARG, " arguments\n"
PRINTLN "sum: ", 2+3, " product: ", 2∗3
PRINTLN STRFMT("E = %f", 2.718)

Debian September 30, 2025 24

RGBASM(5) File Formats Manual RGBASM(5)

PRINT prints out each of its comma-separated arguments. Numbers are printed as unsigned uppercase
hexadecimal with a leading ‘$’. For different formats, use STRFMT.

PRINTLN prints out each of its comma-separated arguments, if any, followed by a newline (‘\n’).

Aborting the assembly process
FAIL and WARN can be used to print errors and warnings respectively during the assembly process. This is
especially useful for macros that get an invalid argument. FAIL and WARN take a string as the only argu-
ment and they will print this string out as a normal error with a line number.

FAIL stops assembling immediately while WARN shows the message but continues afterwards.

If you need to ensure some assumption is correct when compiling, you can use ASSERT and
STATIC_ASSERT. Syntax examples are given below:

Function:
xor a

ASSERT LOW(MyByte) == 0
ld h, HIGH(MyByte)
ld l, a
ld a, [hli]

; You can also indent this!
ASSERT BANK(OtherFunction) == BANK(Function)
call OtherFunction

; Lowercase also works
ld hl, FirstByte
ld a, [hli]

assert FirstByte + 1 == SecondByte
ld b, [hl]
ret

.end
; If you specify one, a message will be printed
STATIC_ASSERT .end - Function < 256, "Function is too large!"

First, the difference between ASSERT and STATIC_ASSERT is that the former is evaluated by RGBASM
if it can, otherwise by RGBLINK; but the latter is only ever evaluated by RGBASM. If RGBASM cannot
compute the value of the argument to STATIC_ASSERT, it will produce an error.

Second, as shown above, a string can be optionally added at the end, to give insight into what the assertion
is checking.

Finally, you can add one of WARN, FAIL or FATAL as the first optional argument to either ASSERT or
STATIC_ASSERT. If the assertion fails, WARN will cause a simple warning (controlled by rgbasm(1) flag
-Wassert) to be emitted; FAIL (the default) will cause a non-fatal error; and FATAL immediately
aborts.

MISCELLANEOUS
Changing options while assembling

OPT can be used to change some of the options during assembling from within the source, instead of defin-
ing them on the command-line. (See rgbasm(1)).

OPT takes a comma-separated list of options as its argument:

PUSHO
OPT g.oOX, Wdiv ; acts like command-line ‘-g.oOX -Wdiv‘
OPT -Wdiv ; dashes before the options are optional
DW ‘..ooOOXX ; uses the graphics constant characters from OPT g
PRINTLN $80000000/-1 ; prints a warning about division

POPO
DW ‘00112233 ; uses the default graphics constant characters
PRINTLN $80000000/-1 ; no warning by default

Debian September 30, 2025 25

RGBASM(5) File Formats Manual RGBASM(5)

OPT can modify the options b, g, p, Q, r, and W.

POPO and PUSHO provide the interface to the option stack. PUSHO will push the current set of options on
the option stack. POPO can then later be used to restore them. Useful if you want to change some options
in an include file and you don’t want to destroy the options set by the program that included your file. The
stack’s number of entries is limited only by the amount of memory in your machine.

PUSHO can also take a comma-separated list of options, to push the current set and apply the argument set
at the same time:

PUSHO b.X, g.oOX
DB %..XXXX..
DW ‘..ooOOXX

POPO

Excluding locations from backtraces
Errors and warnings print backtraces showing the location in the source file where the problem occurred,
tracing the origin of the problem even through a chain of REPT, FOR, MACRO, and INCLUDE locations.
Sometimes there are locations you would like to ignore; for example, a common utility macro when you
only care about the line where the macro is used, or an INCLUDE file that only serves to include other files
and is just filler in the backtrace.

In those cases, you can silence a location with a question mark ‘?’ after the token: all of the locations cre-
ated by a ‘REPT?’, ‘FOR?’, or ‘MACRO?’ will not be printed, and any location created by a ‘INCLUDE?’,
or a macro invocation whose name is immediately followed by a ‘?’, will not be printed. For example, if
this were assembled as example.asm:

MACRO lb
assert -128 <= (\2) && (\2) < 256, "\2 is not a byte"
assert -128 <= (\3) && (\3) < 256, "\3 is not a byte"
ld \1, (LOW(\2) << 8) | LOW(\3)

ENDM
SECTION "Code", ROM0

lb hl, $123, $45

This would print an error backtrace:

error: Assertion failed: $123 is not a byte
at example.asm::lb(2)
<- example.asm(7)

But if MACRO were changed to MACRO?, or lb hl were changed to lb? hl, then the error backtrace
would not mention the location within the ‘lb’ macro:

error: Assertion failed: $123 is not a byte
at example.asm(7)

SEE ALSO
rgbasm(1), rgblink(1), rgblink(5), rgbfix(1), rgbgfx(1), gbz80(7), rgbasm-old(5), rgbds(5), rgbds(7)

HISTORY
rgbasm(1) was originally written by Carsten Sørensen as part of the ASMotor package, and was later
repackaged in RGBDS by Justin Lloyd. It is now maintained by a number of contributors at
https://github.com/gbdev/rgbds.

Debian September 30, 2025 26

	RGBASM(5)
	Name
	Description
	Syntax
	Symbol interpolation

	Expressions
	Numeric formats
	Operators
	Integer functions
	Fixed-point expressions
	String expressions
	Character maps
	Other functions

	Sections
	Section stack
	RAM code
	Unionized sections
	Section fragments
	Fragment literals

	Symbols
	Labels
	Anonymous labels
	Variables
	Numeric constants
	Offset constants
	String constants
	Macros
	Exporting and importing symbols
	Purging symbols
	Predeclared symbols

	Defining data
	Defining constant data in ROM
	Including binary data files
	Statically allocating space in RAM
	Allocating overlapping spaces in RAM
	Requesting alignment

	The macro language
	Invoking macros
	Automatically repeating blocks of code
	Conditionally assembling blocks of code
	Including other source files
	Printing things during assembly
	Aborting the assembly process

	Miscellaneous
	Changing options while assembling
	Excluding locations from backtraces

	See also
	History

