
RGBASM(5) File Formats Manual RGBASM(5)

NAME
rgbasm — language documentation

DESCRIPTION
This is the full description of the language used by rgbasm(1). The description of the instructions sup-
ported by the GameBoy CPU is in gbz80(7).

GENERAL
Syntax

The syntax is lineâbased, just as in any other assembler, meaning that you do one instruction or pseudoâop
per line:

[label] [instruction] [;comment]

Example:

John: ld a,87 ;Weee

All pseudoâops, mnemonics and registers (reserved keywords) are caseâinsensitive and all labels are
caseâsensitive.

Sections
Before you can start writing code, you must define a section. This tells the assembler what kind of infor-
mation follows and, if it is code, where to put it.

SECTION "CoolStuff",ROMX

This switches to the section called "CoolStuff" (or creates it if it doesn’t already exist) and it defines it as a
code section. All sections assembled at the same time that have the same name, type, etc, are considered to
be the same one, and their code is put together in the object file generated by the assembler. All other sec-
tions must have a unique name, even in different source files, or the linker will treat it as an error.

Possible section types are as follows:

ROM0 A ROM section. Mapped to memory at $0000â$3FFF (or $0000-$7FFF if tiny ROM mode is en-
abled in rgblink(1)).

ROMX
A banked ROM section. Mapped to memory at $4000â$7FFF. Valid banks range from 1 to 511.
Not available if tiny ROM mode is enabled in rgblink(1).

VRAM
A banked video RAM section. Mapped to memory at $8000â$9FFF. Can only allocate memory,
not fill it. Valid banks are 0 and 1 but bank 1 isn’t available if DMG mode is enabled in rgblink(1).

SRAM A banked external (save) RAM section. Mapped to memory at $A000â$BFFF. Can only allocate
memory, not fill it. Valid banks range from 0 to 15.

WRAM0
A general-purpose RAM section. Mapped to memory at $C000â$CFFF, or $C000-$DFFF if DMG
mode is enabled in rgblink(1). Can only allocate memory, not fill it.

WRAMX
A banked general-purpose RAM section. Mapped to memory at $D000â$DFFF. Can only allo-
cate memory, not fill it. Valid banks range from 1 to 7. Not available if DMG mode is enabled in
rgblink(1).

OAM An object attributes RAM section. Mapped to memory at $FE00-$FE9F. Can only allocate mem-
ory, not fill it.

HRAM
A high RAM section. Mapped to memory at $FF80â$FFFE. Can only allocate memory, not fill it.

RGBDS Manual January 7, 2018 1

RGBASM(5) File Formats Manual RGBASM(5)

NOTE: If you use this method of allocating HRAM the assembler will NOT choose the short ad-
dressing mode in the LD instructions LD [$FF00+n8],A and LD A,[$FF00+n8] because the ac-
tual address calculation is done by the linker. If you find this undesirable you can use RSSET /
RB / RW instead or use the LDH [$FF00+n8],A and LDH A,[$FF00+n8] syntax instead. This
forces the assembler to emit the correct instruction and the linker to check if the value is in the cor-
rect range.

A section is usually defined as a floating one, but the code can restrict where the linker can place it.

If a section is defined with no indications, it is a floating section. The linker will decide where to place it in
the final binary and it has no obligation to follow any specific rules. The following example defines a sec-
tion that can be placed anywhere in any ROMX bank:

SECTION "CoolStuff",ROMX

If it is needed, the following syntax can be used to fix the base address of the section:

SECTION "CoolStuff",ROMX[$4567]

It won’t, however, fix the bank number, which is left to the linker. If you also want to specify the bank you
can do:

SECTION "CoolStuff",ROMX[$4567],BANK[3]

And if you only want to force the section into a certain bank, and not it’s position within the bank, that’s
also possible:

SECTION "CoolStuff",ROMX,BANK[7]

In addition, you can specify byte alignment for a section. This ensures that the section starts at a memory
address where the given number of least-significant bits are 0. This can be used along with BANK, if de-
sired. However, if an alignment is specified, the base address must be left unassigned. This can be useful
when using DMA to copy data or when it is needed to align the start of an array to 256 bytes to optimize
the code that accesses it.

SECTION "OAM Data",WRAM0,ALIGN[8]; align to 256 bytes

SECTION "VRAM Data",ROMX,BANK[2],ALIGN[4]; align to 16 bytes

HINT: If you think this is a lot of typing for doing a simple ORG type thing you can quite easily write an in-
telligent macro (called ORG for example) that uses @ for the section name and determines correct section
type etc as arguments for SECTION.

POPS and PUSHS provide the interface to the section stack. PUSHS will push the current section context
on the section stack. POPS can then later be used to restore it. Useful for defining sections in included files
when you don’t want to destroy the section context for the program that included your file. The number of
entries in the stack is limited only by the amount of memory in your machine.

Sections can also be placed by using a linkerscript file. The format is described in rgblink(5). They allow
the user to place floating sections in the desired bank in the order specified in the script. This is useful if
the sections can’t be placed at an address manually because the size may change, but they have to be to-
gether.

SYMBOLS
Symbols

RGBDS supports several types of symbols:

Label Used to assign a memory location with a name

EQUate Give a constant a name.

SET Almost the same as EQUate, but you can change the value of a SET during assembling.

Structure (the RS group) Define a structure easily.

RGBDS Manual January 7, 2018 2

RGBASM(5) File Formats Manual RGBASM(5)

String equate (EQUS) Give a frequently used string a name. Can also be used as a mini-macro, like #de-
fine in C.

MACRO A block of code or pseudo instructions that you invoke like any other mnemonic. You can give
them arguments too.

A symbol cannot have the same name as a reserved keyword.

Label

One of the assembler’s main tasks is to keep track of addresses for you so you don’t have to re-
member obscure numbers but can make do with a meaningful name, a label.

This can be done in a number of ways:

GlobalLabel
AnotherGlobal:
.locallabel
.yet_a_local:
AnotherGlobal.with_another_local:
ThisWillBeExported:: ;note the two colons
ThisWillBeExported.too::

In the line where a label is defined there musn’t be any whitespace before it. Local labels are only
accessible within the scope they are defined. A scope starts after a global label and ends at the
next global label. Declaring a label (global or local) with :: does an EXPORT at the same time.
Local labels can be declared as scope.local or simply as as .local. If the former notation is used,
the scope must be the actual current scope.

Labels will normally change their value during the link process and are thus not constant. The ex-
ception is the case in which the base address of a section is fixed, so the address of the label is
known at assembly time.

The subtraction of two labels is only constant (known at assembly time) if they are two local labels
that belong to the same scope, or they are two global labels that belong to sections with fixed base
addresses.

EQU

EQUates are constant symbols. They can, for example, be used for things such as bit-definitions
of hardware registers.

EXIT_OK EQU $00
EXIT_FAILURE EQU $01

Note that a colon (:) following the label-name is not allowed. EQUates cannot be exported and im-
ported. They don’t change their value during the link process.

SET

SETs are similar to EQUates. They are also constant symbols in the sense that their values are de-
fined during the assembly process. These symbols are normally used in macros.

ARRAY_SIZE EQU 4
COUNT SET 2
COUNT SET ARRAY_SIZE+COUNT

Note that a colon (:) following the label-name is not allowed. SETs cannot be exported and im-
ported. Alternatively you can use = as a synonym for SET.

COUNT = 2

RSSET, RSRESET, RB, RW

RGBDS Manual January 7, 2018 3

RGBASM(5) File Formats Manual RGBASM(5)

The RS group of commands is a handy way of defining structures:

RSRESET
str_pStuff RW 1
str_tData RB 256
str_bCount RB 1
str_SIZEOF RB 0

The example defines four equated symbols:

str_pStuff = 0
str_tData = 2
str_bCount = 258
str_SIZEOF = 259

There are four commands in the RS group of commands:

Command Meaning
RSRESET Resets the _RS counter to zero.
RSSET constexprSets the _RS counter to constexpr.
RB constexprSets the preceding symbol to _RS and adds constexpr to _RS.
RW constexprSets the preceding symbol to _RS and adds constexpr ∗ 2 to _RS.
RL constexprSets the preceding symbol to _RS and adds constexpr ∗ 4 to _RS.

Note that a colon (:) following the symbol-name is not allowed. RS symbols cannot be exported
and imported. They don’t change their value during the link process.

EQUS

EQUS is used to define string-symbols. Wherever the assembler meets a string symbol its name is
replaced with its value. If you are familiar with C you can think of it as the same as #define.

COUNTREG EQUS "[hl+]"
ld a,COUNTREG

PLAYER_NAME EQUS "\"John\""
db PLAYER_NAME

Note that : following the label-name is not allowed, and that strings must be quoted to be useful.

This will be interpreted as:

ld a,[hl+]
db "John"

String-symbols can also be used to define small one-line macros:

PUSHA EQUS "push af\npush bc\npush de\npush hl\n"

Note that a colon (:) following the label-name is not allowed. String equates can’t be exported or
imported.

Important note: An EQUS can be expanded to a string that contains another EQUS and it will be
expanded as well. This means that, if you aren’t careful, you may trap the assembler into an infi-
nite loop if there’s a circular dependency in the expansions. Also, a MACRO can have inside an
EQUS which references the same MACRO, which has the same problem.

MACRO

One of the best features of an assembler is the ability to write macros for it. Macros also provide a
method of passing arguments to them and they can then react to the input using IF-constructs.

MyMacro: MACRO
ld a,80
call MyFunc
ENDM

RGBDS Manual January 7, 2018 4

RGBASM(5) File Formats Manual RGBASM(5)

Note that a colon (:) following the macro-name is required. Macros can’t be exported or imported.
It’s valid to call a macro from a macro (yes, even the same one).

The above example is a very simple macro. You execute the macro by typing its name.

add a,b
ld sp,hl
MyMacro ;This will be expanded
sub a,87

When the assembler meets MyMacro it will insert the macrodefinition (the text enclosed in MACRO
/ ENDM).

Suppose your macro contains a loop.

LoopyMacro: MACRO
xor a,a

.loop ld [hl+],a
dec c
jr nz,.loop
ENDM

This is fine. That is, if you only use the macro once per scope. To get around this problem there is
a special label string equate called \@ that you can append to your labels and it will then expand to
a unique string.

\@ also works in REPT-blocks should you have any loops there.

LoopyMacro: MACRO
xor a,a

.loop\@ ld [hl+],a
dec c
jr nz,.loop\@
ENDM

Important note: Since a MACRO can call itself (or a different MACRO that calls the first one)
there can be problems of circular dependency. They trap the assembler in an infinite loop, so you
have to be careful when using recursion with MACROs. Also, a MACRO can have inside an
EQUS which references the same MACRO, which has the same problem.

Macro Arguments

I’d like LoopyMacro a lot better if I didn’t have to pre-load the registers with values and then call
it. What I’d like is the ability to pass it arguments and it then loaded the registers itself.

And I can do that. In macros you can get the arguments by using the special macro string equates
\1 through \9, \1 being the first argument specified on the calling of the macro.

LoopyMacro: MACRO
ld hl,\1
ld c,\2
xor a,a

.loop\@ ld [hl+],a
dec c
jr nz,.loop\@
ENDM

Now I can call the macro specifying two arguments. The first being the address and the second be-
ing a bytecount. The macro will then reset all bytes in this range.

LoopyMacro MyVars,54

RGBDS Manual January 7, 2018 5

RGBASM(5) File Formats Manual RGBASM(5)

Arguments are passed as string equates. There’s no need to enclose them in quotes. An expres-
sion will not be evaluated first but passed directly. This means that it’s probably a very good idea
to use brackets around \1 to \9 if you perform further calculations on them. For instance, if you
pass 1 + 2 as the first argument and then do PRINTV \1 ∗ 2 you will get the value 5 on screen and
not 6 as you might have expected.

In reality, up to 256 arguments can be passed to a macro, but you can only use the first 9 like this.
If you want to use the rest, you need to use the keyword SHIFT.

SHIFT is a special command only available in macros. Very useful in REPT-blocks. It will
"shift" the arguments by one "to the left". \1 will get the value of \2, \2 will get the value in \3
and so forth.

This is the only way of accessing the value of arguments from 10 to 256.

Exporting and importing symbols
Importing and exporting of symbols is a feature that is very useful when your project spans many source-
files and, for example, you need to jump to a routine defined in another file.

Exporting of symbols has to be done manually, importing is done automatically if the assembler doesn’t
know where a symbol is defined.

EXPORT label [, label , . . .]

The assembler will make label accessible to other files during the link process.

GLOBAL label [, label , . . .]

If label is defined during the assembly it will be exported, if not, it will be imported. Handy (very!) for in-
clude-files. Note that, since importing is done automatically, this keyword has the same effect as EXPORT.

Purging symbols
PURGE allows you to completely remove a symbol from the symbol table as if it had never existed. USE
WITH EXTREME CAUTION!!! I can’t stress this enough, you seriously need to know what you are do-
ing. DON’T purge symbol that you use in expressions the linker needs to calculate. In fact, it’s probably
not even safe to purge anything other than string symbols and macros.

Kamikaze EQUS "I don’t want to live anymore"
AOLer EQUS "Me too"

PURGE Kamikaze, AOLer

Note that string symbols that are part of a PURGE command WILL NOT BE EXPANDED as the ONLY ex-
ception to this rule.

Predeclared Symbols
The following symbols are defined by the assembler:

Type Name Contents
EQU @ PC value
EQU _PI Fixed point π
SET _RS _RS Counter
EQU _NARG Number of arguments passed to macro
EQU __LINE__ The current line number
EQUS __FILE__ The current filename
EQUS __DATE__ Today’s date
EQUS __TIME__ The current time
EQUS __ISO_8601_LOCAL__ISO 8601 timestamp (local)
EQUS __ISO_8601_UTC__ISO 8601 timestamp (UTC)
EQU __UTC_YEAR__Today’s year
EQU __UTC_MONTH__Today’s month number, 1-12

RGBDS Manual January 7, 2018 6

RGBASM(5) File Formats Manual RGBASM(5)

EQU __UTC_DAY__ Today’s day of the month, 1-31
EQU __UTC_HOUR__Current hour, 0-23
EQU __UTC_MINUTE__Current minute, 0-59
EQU __UTC_SECOND__Current second, 0-59
EQU __RGBDS_MAJOR__Major version number of RGBDS.
EQU __RGBDS_MINOR__Minor version number of RGBDS.
EQU __RGBDS_PATCH__Patch version number of RGBDS.

DEFINING DATA
Defining constant data

DB defines a list of bytes that will be stored in the final image. Ideal for tables and text (which is not zero-
terminated).

DB 1,2,3,4,"This is a string"

Alternatively, you can use DW to store a list of words (16-bits) or DL to store a list of doublewords/longs
(32-bits). Strings are not allowed as arguments to DW and DL.

You can also use DB, DW and DL without arguments, or leaving empty elements at any point in the list.
This works exactly like DS 1, DS 2 and DS 4 respectively. Consequently, DB, DW and DL can be used in a
WRAM0 / WRAMX / HRAM / VRAM / SRAM section.

Declaring variables in a RAM section
DS allocates a number of bytes. The content is undefined. This is the preferred method of allocationg
space in a RAM section. You can, however, use DB, DW and DL without any arguments instead.

DS str_SIZEOF ;allocate str_SIZEOF bytes

Including binary files
You probably have some graphics you’d like to include. Use INCBIN to include a raw binary file as it is.
If the file isn’t found in the current directory, the include-path list passed to the linker on the command line
will be searched.

INCBIN "titlepic.bin"
INCBIN "sprites/hero.bin" ; UNIX
INCBIN "sprites\\hero.bin" ; Windows

You can also include only part of a file with INCBIN. The example below includes 256 bytes from
data.bin starting from byte 78.

INCBIN "data.bin",78,256

Unions
Unions allow multiple memory allocations to share the same space in memory, like unions in C. This al-
lows you to easily reuse memory for different purposes, depending on the game’s state.

You create unions using the UNION, NEXTU and ENDU keywords. NEXTU lets you create a new block of
allocations, and you may use it as many times within a union as necessary.

UNION
Name: ds 8
Nickname: ds 8
NEXTU
Health: dw
Something: ds 3
Lives: db
NEXTU
Temporary: ds 19
ENDU

This union will use up 19 bytes, as this is the size of the largest block (the last one, containing ’Tempo-
rary’). Of course, as ’Name’, ’Health’, and ’Temporary’ all point to the same memory locations, writes to
any one of these will affect values read from the others.

RGBDS Manual January 7, 2018 7

RGBASM(5) File Formats Manual RGBASM(5)

Unions may be used in any section, but code and data may not be included.

THE MACRO LANGUAGE
Printing things during assembly

These three instructions type text and values to stdout. Useful for debugging macros or wherever you may
feel the need to tell yourself some important information.

PRINTT "I’m the greatest programmer in the whole wide world\n"
PRINTV (2+3)/5
PRINTF MUL(3.14,3987.0)

PRINTT prints out a string.

PRINTV prints out an integer value or, as in the example, the result of a calculation. Unsurprisingly, you
can also print out a constant symbols value.

PRINTF prints out a fixed point value.

Automatically repeating blocks of code
Suppose you’re feeling lazy and you want to unroll a time consuming loop. REPT is here for that purpose.
Everything between REPT and ENDR will be repeated a number of times just as if you done a copy/paste
operation yourself. The following example will assemble add a,c four times:

REPT 4
add a,c
ENDR

You can also use REPT to generate tables on the fly:

; --
; -- Generate a 256 byte sine table with values between 0 and 128
; --
ANGLE SET 0.0

REPT 256
DB (MUL(64.0,SIN(ANGLE))+64.0)>>16

ANGLE SET ANGLE+256.0
ENDR

REPT is also very useful in recursive macros and, as in macros, you can also use the special label operator
\@. REPT-blocks can be nested.

Aborting the assembly process
FAIL and WARN can be used to print errors and warnings respectively during the assembly process. This is
especially useful for macros that get an invalid argument. FAIL and WARN take a string as the only argu-
ment and they will print this string out as a normal error with a line number.

FAIL stops assembling immediately while WARN shows the message but continues afterwards.

Including other source files
Use INCLUDE to process another assembler-file and then return to the current file when done. If the file
isn’t found in the current directory the include-path list will be searched. You may nest INCLUDE calls in-
finitely (or until you run out of memory, whichever comes first).

INCLUDE "irq.inc"

Conditional assembling
The four commands IF, ELIF, ELSE, and ENDC are used to conditionally assemble parts of your file.
This is a powerful feature commonly used in macros.

IF NUM < 0
PRINTT "NUM < 0\n"

ELIF NUM == 0
PRINTT "NUM == 0\n"

ELSE

RGBDS Manual January 7, 2018 8

RGBASM(5) File Formats Manual RGBASM(5)

PRINTT "NUM > 0\n"
ENDC

The ELIF and ELSE blocks are optional. IF / ELIF / ELSE / ENDC blocks can be nested.

Note that if an ELSE block is found before an ELIF block, the ELIF block will be ignored. All ELIF
blocks must go before the ELSE block. Also, if there is more than one ELSE block, all of them but the first
one are ignored.

Integer and Boolean expressions
An expression can be composed of many things. Expressions are always evaluated using signed 32-bit
math.

The most basic expression is just a single number.

Numeric Formats

There are a number of numeric formats.

- Hexadecimal: $0123456789ABCDEF. Case-insensitive
- Decimal: 0123456789
- Octal: &01234567
- Binary: %01
- Fixedpoint (16.16): 01234.56789
- Character constant: "ABYZ"
- Gameboy graphics: `0123

The last one, Gameboy graphics, is quite interesting and useful. The values are actually pixel values and it
converts the “chunky” data to “planar” data as used in the Gameboy.

DW `01012323

Admittedly, an expression with just a single number is quite boring. To spice things up a bit there are a few
operators you can use to perform calculations between numbers.

Operators

A great number of operators you can use in expressions are available (listed in order of precedence):

Operator Meaning
() Precedence override
FUNC()Function call
˜ + - Unary not/plus/minus
∗ / % Multiply/divide/modulo
<< >> Shift left/right
& | ˆ Binary and/or/xor
+ - Add/subtract
!= == <= Boolean comparison
>= < >Boolean comparison (Same precedence as the others)
&& || Boolean and/or
! Unary Boolean not

The result of the boolean operators is zero if when FALSE and non-zero when TRUE. It is legal to use an
integer as the condition for IF blocks. You can use symbols instead of numbers in your expression if you
wish.

An expression is said to be constant when it doesn’t change its value during linking. This basically means
that you can’t use labels in those expressions. The instructions in the macro-language all require expres-
sions that are constant. The only exception is the subtraction of labels in the same section or labels that be-
long to sections with a fixed base addresses, all of which must be defined in the same source file (the calcu-
lation cannot be passed to the object file generated by the assembler). In this case, the result is a constant
that can be calculated at assembly time.

RGBDS Manual January 7, 2018 9

RGBASM(5) File Formats Manual RGBASM(5)

Fixedâpoint Expressions
Fixed point constants are basically normal 32-bit constants where the upper 16 bits are used for the integer
part and the lower 16 bits are used for the fraction (65536ths). This means that you can use them in normal
integer expression, and some integer operators like plus and minus don’t care whether the operands are in-
teger or fixed-point. You can easily convert a fixed-point number to an integer by shifting it right 16 bits. It
follows that you can convert an integer to a fixed-point number by shifting it left.

Some things are different for fixed-point math, though, which is why you have the following functions to
use:

Name Operation
DIV(x,y) x/y
MUL(x,y) x∗y
SIN(x) sin(x)
COS(x) cos(x)
TAN(x) tan(x)
ASIN(x) arcsin(x)
ACOS(x) arccos(x)
ATAN(x) arctan(x)
ATAN2(x,y) Angle between (x,y) and (1,0)

These functions are extremely useful for automatic generation of various tables. A circle has 65536.0 de-
grees. Sine values are between [-1.0; 1.0].

; --
; -- Generate a 256 byte sine table with values between 0 and 128
; --
ANGLE SET 0.0

REPT 256
DB (MUL(64.0,SIN(ANGLE))+64.0)>>16

ANGLE SET ANGLE+256.0
ENDR

String Expressions
The most basic string expression is any number of characters contained in double quotes ("for instance").
Like in C, the escape character is \, and there are a number of commands you can use within a string:

String Meaning
\\ Backslash
\" Double quote
\, Comma
\{ Curly bracket left
\} Curly bracket right
\n Newline ($0A)
\t Tab ($09)
\1 - \9 Macro argument (Only the body of a macros)
\@ Label name suffix (Only in the body of macros and repts)

A funky feature is {symbol} withing a string. This will examine the type of the symbol and insert its value
accordingly. If symbol is a string symbol, the symbols value is simply copied. If it’s a numeric symbol, the
value is converted to hexadecimal notation and inserted as a string.

HINT: The {symbol} construct can also be used outside strings. The symbol’s value is again inserted as a
string. This is just a short way of doing "{symbol}".

Whenever the macro-language expects a string you can actually use a string expression. This consists of
one or more of these function (yes, you can nest them). Note that some of these functions actually return
an integer and can be used as part of an integer expression!

RGBDS Manual January 7, 2018 10

RGBASM(5) File Formats Manual RGBASM(5)

Name Operation
STRLEN(string)Returns the number of characters in string
STRCAT(str1,str2)Appends str2 to str1.
STRCMP(str1,str2)Returns negative if str1 is alphabetically lower than str2, zero if they match, posi-

tive if str1 is greater than str2.
STRIN(str1,str2)Returns the position of str2 in str1 or zero if it’s not present (first character is posi-

tion 1).
STRSUB(str,pos,len)Returns a substring from str starting at pos (first character is position 1) and

with len characters.
STRUPR(str) Converts all characters in str to capitals and returns the new string.
STRLWR(str) Converts all characters in str to lower case and returns the new string.

Other functions
There are a few other functions that do various useful things:

Name Operation
BANK(@/str/lbl)Returns a bank number. If the argument is the symbol @, this function returns the

bank of the current section. If the argument is a string, it returns the bank of the section
that has that name. If the argument is a label, it returns the bank number the label is in.
For labels, as the linker has to resolve this, it can’t be used when the expression has to be
constant.

DEF(label) Returns TRUE if label has been defined.
HIGH(r16/cnst/lbl)Returns the top 8 bits of the operand if it is a label or constant, or the top 8-bit

register if it is a 16-bit register.
LOW(r16/cnst/lbl)Returns the bottom 8 bits of the operand if it is a label or constant, or the bottom

8-bit register if it is a 16-bit register (AF isn’t a valid register for this function).

MISCELLANEOUS
Changing options while assembling

OPT can be used to change some of the options during assembling the source instead of defining them on
the commandline.

OPT takes a comma-seperated list of options as its argument:

PUSHO
OPT g.oOX ;Set the GB graphics constants to use these characters
DW ‘..ooOOXX
POPO
DW ‘00112233

The options that OPT can modify are currently: b, e and g.

POPO and PUSHO provide the interface to the option stack. PUSHO will push the current set of options on
the option stack. POPO can then later be used to restore them. Useful if you want to change some options
in an include file and you don’t want to destroy the options set by the program that included your file. The
stacks number of entries is limited only by the amount of memory in your machine.

ALPHABETICAL LIST OF KEYWORDS
“@”
“__DATE__”
“__FILE__”
“__ISO_8601_LOCAL__”
“__ISO_8601_UTC__”
“__LINE__”
“__TIME__”
“__RGBDS_MAJOR__”

RGBDS Manual January 7, 2018 11

RGBASM(5) File Formats Manual RGBASM(5)

“__RGBDS_MINOR__”
“__RGBDS_PATCH__”
“__UTC_YEAR__”
“__UTC_MONTH__”
“__UTC_DAY__”
“__UTC_HOUR__”
“__UTC_MINUTE__”
“__UTC_SECOND__”
“_NARG”
“_PI”
“_RS”
“ACOS”
“ASIN”
“ATAN”
“ATAN2”
“BANK”
“COS”
“DB”
“DEF”
“DIV”
“DL”
“DS”
“DW”
“ELIF”
“ELSE”
“ENDC”
“ENDM”
“ENDR”
“EQU”
“EQUS”
“EXPORT”
“FAIL”
“GLOBAL”
“HIGH”
“HRAM”
“IF”
“INCBIN”
“INCLUDE”
“LOW”
“MACRO”
“MUL”
“OPT”
“POPO”
“POPS”
“PRINTF”
“PRINTT”
“PRINTV”
“PURGE”
“PUSHO”
“PUSHS”
“REPT”
“RB”

RGBDS Manual January 7, 2018 12

RGBASM(5) File Formats Manual RGBASM(5)

“RL”
“ROM0”
“ROMX”
“RSRESET”
“RSSET”
“RW”
“SECTION”
“SET”
“SHIFT”
“SIN”
“SRAM”
“STRCAT”
“STRCMP”
“STRIN”
“STRLEN”
“STRLWR”
“STRSUB”
“STRUPR”
“TAN”
“VRAM”
“WRAM0”
“WRAMX”
“WARN”

SEE ALSO
rgbasm(1), rgblink(1), rgblink(5), rgbds(5), rgbds(7), gbz80(7)

HISTORY
rgbds was originally written by Carsten Sørensen as part of the ASMotor package, and was later pack-
aged in RGBDS by Justin Lloyd. It is now maintained by a number of contributors at
https://github.com/rednex/rgbds.

RGBDS Manual January 7, 2018 13

	RGBASM(5)
	Name
	Description
	General
	Syntax
	Sections

	Symbols
	Symbols
	Exporting and importing symbols
	Purging symbols
	Predeclared Symbols

	Defining data
	Defining constant data
	Declaring variables in a RAM section
	Including binary files
	Unions

	The macro language
	Printing things during assembly
	Automatically repeating blocks of code
	Aborting the assembly process
	Including other source files
	Conditional assembling
	Integer and Boolean expressions
	Fixedâpoint Expressions
	String Expressions
	Other functions

	Miscellaneous
	Changing options while assembling

	Alphabetical list of keywords
	See also
	History

