GBZ80(7)

NAME

DESCRIPTION

Miscellaneous Information Manual GBZz80(7)

gbz80 — Game Boy CPU instruction reference

This is the list of instructions supported by rgbasm(1), including a short description, the number of bytes
needed to encode them and the number of CPU cycles at 1MHz (or 2MHz in GBC double speed mode)
needed to complete them.

Note: All arithmetic and logic instructions that use register A as a destination can omit the destination,
since it is assumed to be register A by default. So the following two lines have the same effect:

OR A,B
OR B

Furthermore, the CPL instruction can take an optional A destination, since it can only be register A. So the
following two lines have the same effect:

LEGEND
List of abbreviations used in this document.

r8
ri6
n8
nl6
e8
u3

CcC

vec

CPL
CPL A

Any of the 8-bit registers (A, B, C, D, E, H, L).

Any of the general-purpose 16-bit registers (BC, DE, HL).

8-bit integer constant (signed or unsigned, -128 to 255).

16-bit integer constant (signed or unsigned, -32768 to 65535).
8-Dbit signed offset (-128 to 127).

3-bit unsigned bit index (0 to 7, with 0 as the least significant bit).

A condition code:

Z Execute if Z is set.
NZ Execute if Z is not set.
C Execute if C is set.

NC Execute if C is not set.
An RST vector (0x00, 0x08, 0x10, 0x18, 0x20, 0x28, 0x30, and 0x38).

INSTRUCTION OVERVIEW
Load instructions
“LD r8,r8”
“LD r8,n8”
“LD r16,n16”
“LD [HL],r8”
“LD [HL],n8”
“LD r8,[HL]”
“LD [r16],A”
“LD [n16],A”
“LDH [n16],A”
“LDH [C],A”
“LD A,[r16]”
“LD A,[n16]”
“LDH A,[n16]”
“LDH A[C]”
“LD [HLI],A”

Debian

October 31, 2025 1

GBZ80(7)

“LD [HLD],A”
“LD A[HLI]”
“LD A,[HLD]”

8-bit arithmetic instructions

“ADC A,r8”
“ADC A,[HL]”
“ADC A,n8”
“ADD A,r8”
“ADD A,[HL]”
“ADD A,ng8”
“CP Ar8”

“CP A[HL]”
“CP Ang”
“DEC 18”
“DEC [HL]”
“INC r8”

“INC [HL]”
“SBC A,r8”
“SBC A,[HL]”
“SBC A,n8”
“SUB Ar8”
“SUB A,[HL]”
“SUB A,n8”

16-bit arithmetic instructions

“ADD HL,r16”
“DEC r16”
“INC r16”

Bitwise logic instructions

“AND A,r8”
“AND A,[HL]”
“AND A,ng8”
“CPL”

“OR A,r8”
“OR A,[HL]”
“OR A,n8”
“XOR A,r8”
“XOR A,[HL]”
“XOR A,n8”

Bit flag instructions

“BIT u3,r8”
“BIT u3,[HL]”
“RES u3,r8”
“RES u3,[HL]”
“SET u3,r8”
“SET u3,[HL]”

Bit shift instructions

Debian

llRL r8”
“RL [HL]”
llRLA”
“RLC r8”

Miscellaneous Information Manual

October 31, 2025

GBZ80(7)

GBZz80(7) Miscellaneous Information Manual GBZz80(7)

“RLC [HL]”
“RLCA”
“RR r8”
“RR [HL]”
“RRA”
“RRC 18"
“RRC [HL]”
“RRCA”
“SLA 18"
“SLA [HL]”
“SRA r8”
“SRA [HL]”
“SRL r8”
“SRL [HL]”
“SWAP r8”
“SWAP [HL]”

Jumps and subroutine instructions
“CALL n16”
“CALL cc,n16”
“JP HL”

“JP n16”
“JP cc,n16”
“JR n16”
“JR cc,n16”
“RET cc”
“RET”
“RETI”
“RST vec”

Carry flag instructions
“CCF”
“SCF”

Stack manipulation instructions
“ADD HL,SP”
“ADD SP,e8”
“DEC SP”

“INC SP”

“LD SP,n16”
“LD [n16],SP”
“LD HL,SP+e8”
“LD SPHL”
“POP AF”
“POP r16”
“PUSH AF”
“PUSH r16”

Interrupt-related instructions
“p|”
“g|”
“HALT”

Miscellaneous instructions
13 DAA71

Debian October 31, 2025 3

GBZz80(7) Miscellaneous Information Manual GBZz80(7)

“NOP”
“STOP”
INSTRUCTION REFERENCE
ADC A,r8
Add the value in r8 plus the carry flag to A.
Cycles: 1
Bytes: 1
Flags:
Z Set if result is 0.
N 0
H Set if overflow from bit 3.
C Set if overflow from bit 7.
ADC A,[HL]
Add the byte pointed to by HL plus the carry flag to A.
Cycles: 2
Bytes: 1
Flags: See “ADC A,r8”
ADC A,n8
Add the value n8 plus the carry flag to A.
Cycles: 2
Bytes: 2
Flags: See “ADC A,r8”
ADD A,r8
Add the value in r8to A.
Cycles: 1
Bytes: 1
Flags:
Z Set if result is 0.
N 0
H Set if overflow from bit 3.
C Set if overflow from bit 7.
ADD A,[HL]
Add the byte pointed to by HL to A.
Cycles: 2
Bytes: 1
Flags: See “ADD A,r8”
ADD A,n8
Add the value n8 to A.
Cycles: 2

Debian October 31, 2025 4

GBZ80(7)

Bytes: 2
Flags: See “ADD A,r8”

ADD HL,r16

Add the value in r16 to HL.
Cycles: 2

Bytes: 1

Flags:

N 0

H Set if overflow from bit 11.
C Set if overflow from bit 15.

ADD HL,SP

Add the value in SP to HL.
Cycles: 2

Bytes: 1

Flags: See “ADD HL,r16”

ADD SP,e8

Add the signed value e8 to SP.
Cycles: 4

Bytes: 2

Flags:

z 0

N 0

H Set if overflow from bit 3.
C

Set if overflow from bit 7.

AND A,r8
Set A to the bitwise AND between the value in r8 and A.

Cycles: 1

Bytes: 1

Flags:

z Set if result is 0.
N 0
H 1
C 0

AND A [HL]

Debian

Set A to the bitwise AND between the byte pointed to by HL and A.

Cycles: 2
Bytes: 1
Flags: See “AND A,r8”

Miscellaneous Information Manual

October 31, 2025

GBZ80(7)

GBZz80(7) Miscellaneous Information Manual GBZz80(7)

AND A,n8
Set A to the bitwise AND between the value n8 and A.

Cycles: 2
Bytes: 2
Flags: See “AND A,r8”

BIT u3,r8
Test bit u3 in register r8, set the zero flag if bit not set.

Cycles: 2

Bytes: 2

Flags:

z Set if the selected bit is 0.
N 0

H 1

BIT u3,[HL]
Test bit u3 in the byte pointed by HL, set the zero flag if bit not set.

Cycles: 3
Bytes: 2
Flags: See “BIT u3,r8”

CALL n16
Call address n16.

This pushes the address of the instruction after the CALL on the stack, such that “RET” can pop it later;
then, it executes an implicit “JP n16”.

Cycles: 6
Bytes: 3
Flags: None affected.

CALL cc,nl6
Call address n16 if condition cc is met.

Cycles: 6 taken / 3 untaken

Bytes: 3

Flags: None affected.
CCF

Complement Carry Flag.

Cycles: 1

Bytes: 1

Flags:

N 0

H 0

C Inverted.
CP A8

ComPare the value in A with the value in r8.

Debian October 31, 2025 6

GBZz80(7) Miscellaneous Information Manual GBZz80(7)

This subtracts the value in r8 from A and sets flags accordingly, but discards the result.

Cycles: 1

Bytes: 1

Flags:

z Set if result is 0.

N 1

H Set if borrow from bit 4.

C Set if borrow (i.e. if r8 > A).
CP A,[HL]

ComPare the value in A with the byte pointed to by HL.

This subtracts the byte pointed to by HL from A and sets flags accordingly, but discards the result.
Cycles: 2

Bytes: 1

Flags: See “CP A,r8”

CP An8
ComPare the value in A with the value n8.

This subtracts the value n8 from A and sets flags accordingly, but discards the result.

Cycles: 2

Bytes: 2

Flags: See “CP A,r8”
CPL

ComPLement accumulator (A ="A); also called bitwise NOT.

Cycles: 1

Bytes: 1

Flags:

N 1

H 1
DAA

Decimal Adjust Accumulator.

Designed to be used after performing an arithmetic instruction (ADD, ADC, SUB, SBC) whose inputs
were in Binary-Coded Decimal (BCD), adjusting the result to likewise be in BCD.

The exact behavior of this instruction depends on the state of the subtract flag N:

If the subtract flag N is set:
1. Initialize the adjustment to 0.
2. If the half-carry flag H is set, then add $6 to the adjustment.
3. Ifthe carry flag is set, then add $60 to the adjustment.
4. Subtract the adjustment from A.

If the subtract flag N is not set:
1. Initialize the adjustment to 0.
2. Ifthe half-carry flag H is set or A & $F > $9, then add $6 to the adjustment.

Debian October 31, 2025 7

GBZz80(7) Miscellaneous Information Manual GBZz80(7)

3. If the carry flag is set or A > $99, then add $60 to the adjustment and set the carry
flag.
4. Add the adjustment to A.

Cycles: 1

Bytes: 1

Flags:

z Set if result is 0.

H 0

C Set or unaffected depending on the operation.

DEC r8
Decrement the value in register r8 by 1.

Cycles: 1

Bytes: 1

Flags:

z Set if result is 0.

N 1

H Set if borrow from bit 4.

DEC [HL]
Decrement the byte pointed to by HL by 1.

Cycles: 3
Bytes: 1
Flags: See “DEC r8”

DEC r16
Decrement the value in register r16 by 1.

Cycles: 2
Bytes: 1
Flags: None affected.

DEC SP
Decrement the value in register SP by 1.

Cycles: 2
Bytes: 1
Flags: None affected.

DI
Disable Interrupts by clearing the IME flag.

Cycles: 1
Bytes: 1
Flags: None affected.

El
Enable Interrupts by setting the IME flag.

The flag is only set after the instruction following EL.

Debian October 31, 2025 8

GBZz80(7) Miscellaneous Information Manual GBZz80(7)

Cycles: 1
Bytes: 1
Flags: None affected.

HALT
Enter CPU low-power consumption mode until an interrupt occurs.

The exact behavior of this instruction depends on the state of the IME flag, and whether interrupts are
pending (i.e. whether [1E] & [IF] is non-zero):

If the IME flag is set:
The CPU enters low-power mode until after an interrupt is about to be serviced. The han-
dler is executed normally, and the CPU resumes execution after the HALT when that re-
turns.

If the IME flag is not set, and no interrupts are pending:
As soon as an interrupt becomes pending, the CPU resumes execution. This is like the
above, except that the handler is not called.

If the IME flag is not set, and some interrupt is pending:
The CPU continues execution after the HALT, but the byte after it is read twice in a row
(PC is not incremented, due to a hardware bug).

Cycles: -
Bytes: 1
Flags: None affected.

INC r8
Increment the value in register r8 by 1.

Cycles: 1

Bytes: 1

Flags:

z Set if result is 0.

N 0

H Set if overflow from bit 3.

INC [HL]
Increment the byte pointed to by HL by 1.

Cycles: 3
Bytes: 1
Flags: See “INC r8”

INC r16
Increment the value in register r16 by 1.

Cycles: 2
Bytes: 1
Flags: None affected.

INC SP
Increment the value in register SP by 1.

Cycles: 2

Debian October 31, 2025 9

GBZz80(7) Miscellaneous Information Manual GBZz80(7)

Bytes: 1
Flags: None affected.

JP n16
Jump to address n16; effectively, copy n16 into PC.

Cycles: 4
Bytes: 3
Flags: None affected.

JP cc,nl6
Jump to address n16 if condition cc is met.

Cycles: 4 taken / 3 untaken
Bytes: 3
Flags: None affected.

JP HL
Jump to address in HL; effectively, copy the value in register HL into PC.

Cycles: 1
Bytes: 1
Flags: None affected.

JR n16
Relative Jump to address n16.

The address is encoded as a signed 8-bit offset from the address immediately following the JR instruction,
so the target address n16 must be between -128 and 127 bytes away. For example:

JR Label ; no-op; encoded offset of O
Label:

JR Label ; infinite loop; encoded offset of -2
Cycles: 3
Bytes: 2
Flags: None affected.

JR cc,n16
Relative Jump to address n16 if condition cc is met.

Cycles: 3 taken / 2 untaken
Bytes: 2
Flags: None affected.

LD r8,r8
Copy (aka Load) the value in register on the right into the register on the left.

Storing a register into itself is a no-op; however, some Game Boy emulators interpret LD B,B as a break-
point, or LD D,D as a debug message (such as BGB: https://bgb.bircd.org/manual.html#expressions).

Cycles: 1
Bytes: 1
Flags: None affected.

LD r8,n8
Copy the value n8 into register r8.

Debian October 31, 2025 10

GBZz80(7) Miscellaneous Information Manual GBZz80(7)

Cycles: 2
Bytes: 2
Flags: None affected.

LD r16,n16
Copy the value n16 into register r16.

Cycles: 3
Bytes: 3
Flags: None affected.

LD [HL],r8
Copy the value in register r8 into the byte pointed to by HL.

Cycles: 2
Bytes: 1
Flags: None affected.

LD [HL],n8
Copy the value n8 into the byte pointed to by HL.

Cycles: 3
Bytes: 2
Flags: None affected.

LD r8,[HL]
Copy the value pointed to by HL into register r8.

Cycles: 2
Bytes: 1
Flags: None affected.

LD [r16],A
Copy the value in register A into the byte pointed to by ri16.

Cycles: 2
Bytes: 1
Flags: None affected.

LD [n16],A
Copy the value in register A into the byte at address n16.

Cycles: 4
Bytes: 3
Flags: None affected.

LDH [n16],A
Copy the value in register A into the byte at address n16, provided the address is between $FF00 and
$FFFF.

Cycles: 3
Bytes: 2
Flags: None affected.

Debian October 31, 2025 11

GBZz80(7) Miscellaneous Information Manual

LDH [C].A

Copy the value in register A into the byte at address $FF00+C.
Cycles: 2

Bytes: 1

Flags: None affected.

This is sometimes written as LD [$FF00+C], A.

LD A[r16]

Copy the byte pointed to by r16 into register A.
Cycles: 2

Bytes: 1

Flags: None affected.

LD A,[n16]

Copy the byte at address n16 into register A.
Cycles: 4

Bytes: 3

Flags: None affected.

LDH A,[n16]

Copy the byte at address n16 into register A, provided the address is between $FF00 and $FFFF.

Cycles: 3
Bytes: 2
Flags: None affected.

LDH A,[C]

Copy the byte at address $FF00+C into register A.
Cycles: 2

Bytes: 1

Flags: None affected.

This is sometimes written as LD A, [$FFO0+C].

LD [HLIJ.A

Copy the value in register A into the byte pointed by HL and increment HL afterwards.
Cycles: 2

Bytes: 1

Flags: None affected.

This is sometimes written as LD [HL+],A, or LDI [HL],A.

LD [HLD],A

Debian

Copy the value in register A into the byte pointed by HL and decrement HL afterwards.
Cycles: 2

Bytes: 1

Flags: None affected.

This is sometimes written as LD [HL-],A, or LDD [HL],A.

October 31, 2025

GBZ80(7)

12

GBZz80(7) Miscellaneous Information Manual GBZz80(7)

LD A,[HLD]
Copy the byte pointed to by HL into register A, and decrement HL afterwards.

Cycles: 2

Bytes: 1

Flags: None affected.

This is sometimes written as LD A, [HL-], or LDD A, [HL].

LD A[HLI]
Copy the byte pointed to by HL into register A, and increment HL afterwards.

Cycles: 2

Bytes: 1

Flags: None affected.

This is sometimes written as LD A, [HL+], or LDI A, [HL].

LD SP,n16
Copy the value n16 into register SP.

Cycles: 3
Bytes: 3
Flags: None affected.

LD [n16],SP
Copy SP & $FF at address n16 and SP >> 8 at address n16 + 1.

Cycles: 5
Bytes: 3
Flags: None affected.

LD HL,SP+e8
Add the signed value 8 to SP and copy the result in HL.

Cycles: 3

Bytes: 2

Flags:

z 0

N 0

H Set if overflow from bit 3.
C Set if overflow from bit 7.

LD SP,HL
Copy register HL into register SP.

Cycles: 2
Bytes: 1
Flags: None affected.

NOP
No OPeration.

Cycles: 1

Debian October 31, 2025 13

GBZz80(7) Miscellaneous Information Manual

Bytes: 1
Flags: None affected.
OR Ar8
Set A to the bitwise OR between the value in r8 and A.
Cycles: 1
Bytes: 1
Flags:
Z Set if result is 0.
N 0
H 0
C 0
OR A [HL]

Set A to the bitwise OR between the byte pointed to by HL and A.
Cycles: 2

Bytes: 1

Flags: See “OR A,r8”

OR An8

Set A to the bitwise OR between the value n8 and A.
Cycles: 2

Bytes: 2

Flags: See “OR A,r8”

POP AF
Pop register AF from the stack. This is roughly equivalent to the following imaginary instructions:

LD F, [SP] ; See below for individual flags

INC SP

LD A, [SP]

INC SP
Cycles: 3
Bytes: 1
Flags:
Z Set from bit 7 of the popped low byte.
N Set from bit 6 of the popped low byte.
H Set from bit 5 of the popped low byte.
C Set from bit 4 of the popped low byte.

POP r16

Debian

GBZ80(7)

Pop register r16 from the stack. This is roughly equivalent to the following imaginary instructions:

LD LOW(r16), [SP] : C, Eor L
INC SP
LD HIGH(r16), [SP] ; B, D or H
INC SP

October 31, 2025

14

GBZz80(7) Miscellaneous Information Manual GBZz80(7)

Cycles: 3
Bytes: 1
Flags: None affected.
PUSH AF
Push register AF into the stack. This is roughly equivalent to the following imaginary instructions:
DEC SP
LD [SP], A
DEC SP
LD [SP], F.Z << 7 | F.N << 6 | F.H<< 5 | F.C << 4
Cycles: 4
Bytes: 1
Flags: None affected.
PUSH r16
Push register r16 into the stack. This is roughly equivalent to the following imaginary instructions:
DEC SP
LD [SP], HIGH(r16) ; B, D or H
DEC SP
LD [SP], LOwW(rie) ;C, EortL
Cycles: 4
Bytes: 1
Flags: None affected.
RES u3,r8
Set bit u3 in register r8 to 0. Bit 0 is the rightmost one, bit 7 the leftmost one.
Cycles: 2
Bytes: 2
Flags: None affected.
RES u3,[HL]
Set bit u3 in the byte pointed by HL to 0. Bit O is the rightmost one, bit 7 the leftmost one.
Cycles: 4
Bytes: 2
Flags: None affected.
RET

Return from subroutine. This is basically a POP PC (if such an instruction existed). See “POP r16” for an
explanation of how POP works.

Cycles: 4
Bytes: 1
Flags: None affected.

RET cc
Return from subroutine if condition cc is met.

Cycles: 5 taken / 2 untaken
Bytes: 1

Debian October 31, 2025 15

GBZ80(7)

Flags: None affected.

RETI
Return from subroutine and enable interrupts. This is basically equivalent to executing “EI” then “RET”,

meaning that IME is set right after this instruction.
Cycles: 4

Bytes: 1

Flags: None affected.

RL r8

Rotate bits in register r8 left, through the carry flag.

adda C &aadaa brv a ... a bo aaaa

dddddadadddadddddadddaddddddaaadaaaadadaa

Cycles: 2

Bytes: 2

Flags:

z Set if result is 0.

N 0

H 0

C Set according to result.
RL [HL]

Rotate the byte pointed to by HL left, through the carry flag.

aadaa C adada b7 a ... a b0 aaaa

FEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEED
Cycles: 4

Bytes: 2

Flags: See “RL r8”

RLA

Debian

Rotate register A left, through the carry flag.

adda C &aadaa brv a ... a bo aaaa

dddddadadddadddddaddddaddddddaaadaaaadadaa

Cycles: 1
Bytes: 1
Flags:

z 0
N 0
H 0

October 31, 2025

Miscellaneous Information Manual

GBZ80(7)

16

GBZ80(7)

C Set according to result.

RLC r8

Rotate register r8 left.

44 Flags 44 44545544 r8 4344444
a C 4844-83a4 b7 &4 ... & b0 aada
85555584555 4 4455555558455554444 a

addddadadaddadddddadaadaaadaaa

Cycles: 2

Bytes: 2

Flags:

z Set if result is 0.

N 0

H 0

C Set according to result.
RLC [HL]

Rotate the byte pointed to by HL left.

44 Flags 44 4454444 [HL] aaa4aa
a C 4844-83a4 b7 &4 ... & b0 aada
85555584555 4 4455555558455554444 a

EEEEEEEEEEEEEEEEEEEEEEEL
Cycles: 4

Bytes: 2

Flags: See “RLC r8”

RLCA

Rotate register A left.

aa Flags 4a4 44455444 A 454a4a4aaa
a C &5345-434 b7 & ... & b0 a&daa
845584448884 a aaaa55555a88855548484aa a

addddadadaddadddddadaadaaadaaa

Cycles: 1

Bytes: 1

Flags:

z 0

N 0

H 0

C Set according to result.
RR r8

Debian

Rotate register r8 right, through the carry flag.

dddddadadddadddddaddddaddddddaaadaaaadadaa

October 31, 2025

Miscellaneous Information Manual

GBZ80(7)

17

GBZ80(7)

Cycles: 2

Bytes: 2

Flags:

z Set if result is 0.

N 0

H 0

C Set according to result.
RR [HL]

Rotate the byte pointed to by HL right, through the carry flag.

adaa br a ... a b0 aaaas C aaaa

FEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEED
Cycles: 4

Bytes: 2

Flags: See “RR r8”

RRA

Rotate register A right, through the carry flag.

ad4a b7 4 ... a b0 484884 C aaaa

dddddadadddadddddadddaddddddaaadaaaadadaa

Cycles: 1

Bytes: 1

Flags:

z 0

N 0

H 0

C Set according to result.
RRC r8

Debian

Rotate register r8 right.

8484 b7 4 ... a b0 54545-884 C a

addddadadaddadddddadaadaaadaaa

Cycles: 2

Bytes: 2

Flags:

z Set if result is 0.
N 0

October 31, 2025

Miscellaneous Information Manual

GBZ80(7)

18

GBZz80(7) Miscellaneous Information Manual GBZz80(7)

H 0
C Set according to result.
RRC [HL]

Rotate the byte pointed to by HL right.

aasaaaa [HL] aaaaaa aa Flags aa
84484 b7 4 ... a b0 54545-884 C a

855545445555558455454444
Cycles: 4

Bytes: 2

Flags: See “RRC r8”

RRCA
Rotate register A right.

84484 b7 4 ... a b0 54545-884 C a

addddadadaddadddddadaadaaadaaa

Cycles: 1
Bytes: 1
Flags:
z 0
N 0
H 0
C Set according to result.
RST vec
Call address vec. This is a shorter and faster equivalent to “CALL” for suitable values of vec.
Cycles: 4
Bytes: 1
Flags: None affected.
SBC A,r8
Subtract the value in r8 and the carry flag from A.
Cycles: 1
Bytes: 1
Flags:
z Set if result is 0.
N 1
H Set if borrow from bit 4.
C Set if borrow (i.e. if (r8 + carry) > A).
SBC A,[HL]

Subtract the byte pointed to by HL and the carry flag from A.

Debian October 31, 2025 19

GBZz80(7) Miscellaneous Information Manual

Cycles: 2
Bytes: 1
Flags: See “SBC A,r8”

SBC An8
Subtract the value n8 and the carry flag from A.

Cycles: 2
Bytes: 2
Flags: See “SBC A,r8”

SCF
Set Carry Flag.

Cycles: 1
Bytes: 1
Flags:

SET u3,r8
Set bit u3 in register r8 to 1. Bit 0 is the rightmost one, bit 7 the leftmost one.

Cycles: 2

Bytes: 2

Flags: None affected.
SET u3,[HL]

Set bit u3 in the byte pointed by HL to 1. Bit O is the rightmost one, bit 7 the leftmost one.

Cycles: 4
Bytes: 2
Flags: None affected.

SLA 18
Shift Left Arithmetically register r8.

a C 4&ddda b7 a ... a bo 444 0

dddddadadddadad dddadddddddddaaadaaad

Cycles: 2

Bytes: 2

Flags:

z Set if result is 0.

N 0

H 0

C Set according to result.

Debian October 31, 2025

GBZ80(7)

20

GBZ80(7)

SLA [HL]

Shift Left Arithmetically the byte pointed to by HL.

a C a&ddda b7 a ... a bo 444 0

FEEEEEEEEEEREEEEEEEEEEEEEEEEEEED
Cycles: 4

Bytes: 2

Flags: See “SLA r8”

SRA r8

Shift Right Arithmetically register r8 (bit 7 of r8 is unchanged).

ab7a ... abo adddda C a

dddddadddddddddadddad ddddaaaadaaad

Cycles: 2

Bytes: 2

Flags:

z Set if result is 0.

N 0

H 0

C Set according to result.
SRA [HL]

Miscellaneous Information Manual

GBZ80(7)

Shift Right Arithmetically the byte pointed to by HL (bit 7 of the byte pointed to by HL is unchanged).

adb7a ... abo 45884 C a
FEEEEEEEEEEEEEEEEEREEEEEEEEEEE]
Cycles: 4
Bytes: 2

Flags: See “SRA r8”

SRL r8

Debian

Shift Right Logically register r8.

0O 884 b7 & ... &4 b0 448484 C a

dddddadadddadddddddddad ddddaaadaaad

Cycles: 2

Bytes: 2

Flags:

z Set if result is 0.

N 0

H 0

C Set according to result.

October 31, 2025

21

GBZz80(7) Miscellaneous Information Manual GBZz80(7)

SRL [HL]
Shift Right Logically the byte pointed to by HL.

0O 884 b7 & ... &4 b0 488484 C a
8555558455555584555 4584455545444

Cycles: 4

Bytes: 2

Flags: See “SRL r8”

STOP

Enter CPU very low power mode. Also used to switch between GBC double speed and normal speed CPU
modes.

The exact behavior of this instruction is fragile and may interpret its second byte as a separate instruction
(see the Pan Docs: https://gbdev.io/pandocs/Reducing_Power_Consumption.html#using-the-stop-
instruction), which is why rgbasm(1) allows explicitly specifying the second byte (STOP n8) to override
the default of $00 (a NOP instruction).

Cycles: -
Bytes: 2
Flags: None affected.

SUB A,r8
Subtract the value in r8 from A.

Cycles: 1

Bytes: 1

Flags:

z Set if result is 0.

N 1

H Set if borrow from bit 4.

C Set if borrow (i.e. if r8 > A).

SUB A,[HL]
Subtract the byte pointed to by HL from A.

Cycles: 2
Bytes: 1
Flags: See “SUB A,r8”

SUB A,n8
Subtract the value n8 from A.

Cycles: 2
Bytes: 2
Flags: See “SUB A,r8”

SWAP r8
Swap the upper 4 bits in register r8 and the lower 4 ones.

Cycles: 2
Bytes: 2

Debian October 31, 2025 22

GBZz80(7) Miscellaneous Information Manual GBZz80(7)

Flags:

z Set if result is 0.
N 0

H 0

C 0

SWAP [HL]
Swap the upper 4 bits in the byte pointed by HL and the lower 4 ones.

Cycles: 4
Bytes: 2
Flags: See “SWAP r8”

XOR A,r8
Set A to the bitwise XOR between the value in r8 and A.

Cycles: 1

Bytes: 1

Flags:

z Set if result is 0.
N 0
H 0
C 0

XOR A|[HL]
Set A to the bitwise XOR between the byte pointed to by HL and A.

Cycles: 2
Bytes: 1
Flags: See “XOR A,r8”

XOR An8
Set A to the bitwise XOR between the value n8 and A.

Cycles: 2
Bytes: 2
Flags: See “XOR A,r8”

SEE ALSO
rgbasm(1), rgblink(1), rgbfix(1), rgbgfx(1), rgbasm-old(5), rghds(7)
HISTORY
rghbasm(1) was originally written by Carsten Sgrensen as part of the ASMotor package, and was later

repackaged in RGBDS by Justin Lloyd. It is now maintained by a number of contributors at
https://github.com/gbdev/rgbds.

Debian October 31, 2025 23

	GBZ80(7)
	Name
	Description
	Legend
	Instruction overview
	Load instructions
	8-bit arithmetic instructions
	16-bit arithmetic instructions
	Bitwise logic instructions
	Bit flag instructions
	Bit shift instructions
	Jumps and subroutine instructions
	Carry flag instructions
	Stack manipulation instructions
	Interrupt-related instructions
	Miscellaneous instructions

	Instruction reference
	ADC A,r8
	ADC A, [HL]
	ADC A,n8
	ADD A,r8
	ADD A, [HL]
	ADD A,n8
	ADD HL,r16
	ADD HL,SP
	ADD SP,e8
	AND A,r8
	AND A, [HL]
	AND A,n8
	BIT u3,r8
	BIT u3, [HL]
	CALL n16
	CALL cc,n16
	CCF
	CP A,r8
	CP A, [HL]
	CP A,n8
	CPL
	DAA
	DEC r8
	DEC [HL]
	DEC r16
	DEC SP
	DI
	EI
	HALT
	INC r8
	INC [HL]
	INC r16
	INC SP
	JP n16
	JP cc,n16
	JP HL
	JR n16
	JR cc,n16
	LD r8,r8
	LD r8,n8
	LD r16,n16
	LD [HL] ,r8
	LD [HL] ,n8
	LD r8, [HL]
	LD [r16] ,A
	LD [n16] ,A
	LDH [n16] ,A
	LDH [C] ,A
	LD A, [r16]
	LD A, [n16]
	LDH A, [n16]
	LDH A, [C]
	LD [HLI] ,A
	LD [HLD] ,A
	LD A, [HLD]
	LD A, [HLI]
	LD SP,n16
	LD [n16] ,SP
	LD HL,SP+e8
	LD SP,HL
	NOP
	OR A,r8
	OR A, [HL]
	OR A,n8
	POP AF
	POP r16
	PUSH AF
	PUSH r16
	RES u3,r8
	RES u3, [HL]
	RET
	RET cc
	RETI
	RL r8
	RL [HL]
	RLA
	RLC r8
	RLC [HL]
	RLCA
	RR r8
	RR [HL]
	RRA
	RRC r8
	RRC [HL]
	RRCA
	RST vec
	SBC A,r8
	SBC A, [HL]
	SBC A,n8
	SCF
	SET u3,r8
	SET u3, [HL]
	SLA r8
	SLA [HL]
	SRA r8
	SRA [HL]
	SRL r8
	SRL [HL]
	STOP
	SUB A,r8
	SUB A, [HL]
	SUB A,n8
	SWAP r8
	SWAP [HL]
	XOR A,r8
	XOR A, [HL]
	XOR A,n8

	See also
	History

