
GBZ80(7) Miscellaneous Information Manual GBZ80(7)

NAME
gbz80 — CPU opcode reference

DESCRIPTION
This is the list of opcodes supported by rgbasm(1), including a short description, the number of bytes
needed to encode them and the number of CPU cycles at 1MHz (or 2MHz in GBC dual speed mode)
needed to complete them.

Note: All arithmetic/logic operations that use register A as destination can omit the destination as it is as-
sumed to be register A by default. The following two lines have the same effect:

OR A,B
OR B

LEGEND
List of abbreviations used in this document.

r8 Any of the 8-bit registers (A, B, C, D, E, H, L).

r16 Any of the general-purpose 16-bit registers (BC, DE, HL).

n8 8-bit integer constant.

n16 16-bit integer constant.

e8 8-bit offset (-128 to 127).

u3 3-bit unsigned integer constant (0 to 7).

cc Condition codes:
Z Execute if Z is set.
NZ Execute if Z is not set.
C Execute if C is set.
NC Execute if C is not set.
! cc Negates a condition code.

vec One of the RST vectors (0x00, 0x08, 0x10, 0x18, 0x20, 0x28, 0x30, and 0x38).

INSTRUCTION OVERVIEW
8-bit Arithmetic and Logic Instructions

“ADC A,r8”
“ADC A,[HL]”
“ADC A,n8”
“ADD A,r8”
“ADD A,[HL]”
“ADD A,n8”
“AND A,r8”
“AND A,[HL]”
“AND A,n8”
“CP A,r8”
“CP A,[HL]”
“CP A,n8”
“DEC r8”
“DEC [HL]”
“INC r8”
“INC [HL]”
“OR A,r8”
“OR A,[HL]”

GNU                                                                     December 22, 2023                                                                           1



GBZ80(7) Miscellaneous Information Manual GBZ80(7)

“OR A,n8”
“SBC A,r8”
“SBC A,[HL]”
“SBC A,n8”
“SUB A,r8”
“SUB A,[HL]”
“SUB A,n8”
“XOR A,r8”
“XOR A,[HL]”
“XOR A,n8”

16-bit Arithmetic Instructions
“ADD HL,r16”
“DEC r16”
“INC r16”

Bit Operations Instructions
“BIT u3,r8”
“BIT u3,[HL]”
“RES u3,r8”
“RES u3,[HL]”
“SET u3,r8”
“SET u3,[HL]”
“SWAP r8”
“SWAP [HL]”

Bit Shift Instructions
“RL r8”
“RL [HL]”
“RLA”
“RLC r8”
“RLC [HL]”
“RLCA”
“RR r8”
“RR [HL]”
“RRA”
“RRC r8”
“RRC [HL]”
“RRCA”
“SLA r8”
“SLA [HL]”
“SRA r8”
“SRA [HL]”
“SRL r8”
“SRL [HL]”

Load Instructions
“LD r8,r8”
“LD r8,n8”
“LD r16,n16”
“LD [HL],r8”
“LD [HL],n8”
“LD r8,[HL]”
“LD [r16],A”

GNU                                                                     December 22, 2023                                                                           2



GBZ80(7) Miscellaneous Information Manual GBZ80(7)

“LD [n16],A”
“LDH [n16],A”
“LDH [C],A”
“LD A,[r16]”
“LD A,[n16]”
“LDH A,[n16]”
“LDH A,[C]”
“LD [HLI],A”
“LD [HLD],A”
“LD A,[HLI]”
“LD A,[HLD]”

Jumps and Subroutines
“CALL n16”
“CALL cc,n16”
“JP HL”
“JP n16”
“JP cc,n16”
“JR n16”
“JR cc,n16”
“RET cc”
“RET”
“RETI”
“RST vec”

Stack Operations Instructions
“ADD HL,SP”
“ADD SP,e8”
“DEC SP”
“INC SP”
“LD SP,n16”
“LD [n16],SP”
“LD HL,SP+e8”
“LD SP,HL”
“POP AF”
“POP r16”
“PUSH AF”
“PUSH r16”

Miscellaneous Instructions
“CCF”
“CPL”
“DAA”
“DI”
“EI”
“HALT”
“NOP”
“SCF”
“STOP”

INSTRUCTION REFERENCE
ADC A,r8

Add the value in r8 plus the carry flag to A.

Cycles: 1

GNU                                                                     December 22, 2023                                                                           3



GBZ80(7) Miscellaneous Information Manual GBZ80(7)

Bytes: 1

Flags:
Z Set if result is 0.
N 0
H Set if overflow from bit 3.
C Set if overflow from bit 7.

ADC A,[HL]
Add the byte pointed to by HL plus the carry flag to A.

Cycles: 2

Bytes: 1

Flags: See “ADC A,r8”

ADC A,n8
Add the value n8 plus the carry flag to A.

Cycles: 2

Bytes: 2

Flags: See “ADC A,r8”

ADD A,r8
Add the value in r8 to A.

Cycles: 1

Bytes: 1

Flags:
Z Set if result is 0.
N 0
H Set if overflow from bit 3.
C Set if overflow from bit 7.

ADD A,[HL]
Add the byte pointed to by HL to A.

Cycles: 2

Bytes: 1

Flags: See “ADD A,r8”

ADD A,n8
Add the value n8 to A.

Cycles: 2

Bytes: 2

Flags: See “ADD A,r8”

ADD HL,r16
Add the value in r16 to HL.

Cycles: 2

Bytes: 1

Flags:
N 0
H Set if overflow from bit 11.

GNU                                                                     December 22, 2023                                                                           4



GBZ80(7) Miscellaneous Information Manual GBZ80(7)

C Set if overflow from bit 15.

ADD HL,SP
Add the value in SP to HL.

Cycles: 2

Bytes: 1

Flags: See “ADD HL,r16”

ADD SP,e8
Add the signed value e8 to SP.

Cycles: 4

Bytes: 2

Flags:
Z 0
N 0
H Set if overflow from bit 3.
C Set if overflow from bit 7.

AND A,r8
Bitwise AND between the value in r8 and A.

Cycles: 1

Bytes: 1

Flags:
Z Set if result is 0.
N 0
H 1
C 0

AND A,[HL]
Bitwise AND between the byte pointed to by HL and A.

Cycles: 2

Bytes: 1

Flags: See “AND A,r8”

AND A,n8
Bitwise AND between the value in n8 and A.

Cycles: 2

Bytes: 2

Flags: See “AND A,r8”

BIT u3,r8
Test bit u3 in register r8, set the zero flag if bit not set.

Cycles: 2

Bytes: 2

Flags:
Z Set if the selected bit is 0.
N 0
H 1

GNU                                                                     December 22, 2023                                                                           5



GBZ80(7) Miscellaneous Information Manual GBZ80(7)

BIT u3,[HL]
Test bit u3 in the byte pointed by HL, set the zero flag if bit not set.

Cycles: 3

Bytes: 2

Flags: See “BIT u3,r8”

CALL n16
Call address n16. This pushes the address of the instruction after the CALL on the stack, such that “RET”
can pop it later; then, it executes an implicit “JP n16”.

Cycles: 6

Bytes: 3

Flags: None affected.

CALL cc,n16
Call address n16 if condition cc is met.

Cycles: 6 taken / 3 untaken

Bytes: 3

Flags: None affected.

CCF
Complement Carry Flag.

Cycles: 1

Bytes: 1

Flags:
N 0
H 0
C Inverted.

CP A,r8
Subtract the value in r8 from A and set flags accordingly, but don’t store the result. This is useful for
ComParing values.

Cycles: 1

Bytes: 1

Flags:
Z Set if result is 0.
N 1
H Set if borrow from bit 4.
C Set if borrow (i.e. if r8 > A).

CP A,[HL]
Subtract the byte pointed to by HL from A and set flags accordingly, but don’t store the result.

Cycles: 2

Bytes: 1

Flags: See “CP A,r8”

CP A,n8
Subtract the value n8 from A and set flags accordingly, but don’t store the result.

Cycles: 2

GNU                                                                     December 22, 2023                                                                           6



GBZ80(7) Miscellaneous Information Manual GBZ80(7)

Bytes: 2

Flags: See “CP A,r8”

CPL
ComPLement accumulator (A = ˜A).

Cycles: 1

Bytes: 1

Flags:
N 1
H 1

DAA
Decimal Adjust Accumulator to get a correct BCD representation after an arithmetic instruction.

Cycles: 1

Bytes: 1

Flags:
Z Set if result is 0.
H 0
C Set or reset depending on the operation.

DEC r8
Decrement value in register r8 by 1.

Cycles: 1

Bytes: 1

Flags:
Z Set if result is 0.
N 1
H Set if borrow from bit 4.

DEC [HL]
Decrement the byte pointed to by HL by 1.

Cycles: 3

Bytes: 1

Flags: See “DEC r8”

DEC r16
Decrement value in register r16 by 1.

Cycles: 2

Bytes: 1

Flags: None affected.

DEC SP
Decrement value in register SP by 1.

Cycles: 2

Bytes: 1

Flags: None affected.

DI
Disable Interrupts by clearing the IME flag.

GNU                                                                     December 22, 2023                                                                           7



GBZ80(7) Miscellaneous Information Manual GBZ80(7)

Cycles: 1

Bytes: 1

Flags: None affected.

EI
Enable Interrupts by setting the IME flag. The flag is only set after the instruction following EI.

Cycles: 1

Bytes: 1

Flags: None affected.

HALT
Enter CPU low-power consumption mode until an interrupt occurs. The exact behavior of this instruction
depends on the state of the IME flag.

IME set
The CPU enters low-power mode until after an interrupt is about to be serviced. The handler is ex-
ecuted normally, and the CPU resumes execution after the HALT when that returns.

IME not set
The behavior depends on whether an interrupt is pending (i.e. [IE] & [IF] is non-zero).

None pending
As soon as an interrupt becomes pending, the CPU resumes execution. This is like the
above, except that the handler is not called.

Some pending
The CPU continues execution after the HALT, but the byte after it is read twice in a row
(PC is not incremented, due to a hardware bug).

Cycles: -

Bytes: 1

Flags: None affected.

INC r8
Increment value in register r8 by 1.

Cycles: 1

Bytes: 1

Flags:
Z Set if result is 0.
N 0
H Set if overflow from bit 3.

INC [HL]
Increment the byte pointed to by HL by 1.

Cycles: 3

Bytes: 1

Flags: See “INC r8”

INC r16
Increment value in register r16 by 1.

Cycles: 2

Bytes: 1

GNU                                                                     December 22, 2023                                                                           8



GBZ80(7) Miscellaneous Information Manual GBZ80(7)

Flags: None affected.

INC SP
Increment value in register SP by 1.

Cycles: 2

Bytes: 1

Flags: None affected.

JP n16
Jump to address n16; effectively, store n16 into PC.

Cycles: 4

Bytes: 3

Flags: None affected.

JP cc,n16
Jump to address n16 if condition cc is met.

Cycles: 4 taken / 3 untaken

Bytes: 3

Flags: None affected.

JP HL
Jump to address in HL; effectively, load PC with value in register HL.

Cycles: 1

Bytes: 1

Flags: None affected.

JR n16
Relative Jump to address n16. The address is encoded as a signed 8-bit offset from the address immedi-
ately following the JR instruction, so the target address n16 must be between -128 and 127 bytes away.
For example:

JR Label  ; no-op; encoded offset of 0
Label:

JR Label  ; infinite loop; encoded offset of -2

Cycles: 3

Bytes: 2

Flags: None affected.

JR cc,n16
Relative Jump to address n16 if condition cc is met.

Cycles: 3 taken / 2 untaken

Bytes: 2

Flags: None affected.

LD r8,r8
Load (copy) value in register on the right into register on the left.

Cycles: 1

Bytes: 1

Flags: None affected.

GNU                                                                     December 22, 2023                                                                           9



GBZ80(7) Miscellaneous Information Manual GBZ80(7)

LD r8,n8
Load value n8 into register r8.

Cycles: 2

Bytes: 2

Flags: None affected.

LD r16,n16
Load value n16 into register r16.

Cycles: 3

Bytes: 3

Flags: None affected.

LD [HL],r8
Store value in register r8 into the byte pointed to by register HL.

Cycles: 2

Bytes: 1

Flags: None affected.

LD [HL],n8
Store value n8 into the byte pointed to by register HL.

Cycles: 3

Bytes: 2

Flags: None affected.

LD r8,[HL]
Load value into register r8 from the byte pointed to by register HL.

Cycles: 2

Bytes: 1

Flags: None affected.

LD [r16],A
Store value in register A into the byte pointed to by register r16.

Cycles: 2

Bytes: 1

Flags: None affected.

LD [n16],A
Store value in register A into the byte at address n16.

Cycles: 4

Bytes: 3

Flags: None affected.

LDH [n16],A
Store value in register A into the byte at address n16, provided the address is between $FF00 and $FFFF.

Cycles: 3

Bytes: 2

Flags: None affected.

GNU                                                                     December 22, 2023                                                                         10



GBZ80(7) Miscellaneous Information Manual GBZ80(7)

This is sometimes written as LDIO [n16],A, or LD [$FF00+n8],A.

LDH [C],A
Store value in register A into the byte at address $FF00+C.

Cycles: 2

Bytes: 1

Flags: None affected.

This is sometimes written as LDIO [C],A, or LD [$FF00+C],A.

LD A,[r16]
Load value in register A from the byte pointed to by register r16.

Cycles: 2

Bytes: 1

Flags: None affected.

LD A,[n16]
Load value in register A from the byte at address n16.

Cycles: 4

Bytes: 3

Flags: None affected.

LDH A,[n16]
Load value in register A from the byte at address n16, provided the address is between $FF00 and $FFFF.

Cycles: 3

Bytes: 2

Flags: None affected.

This is sometimes written as LDIO A,[n16], or LD A,[$FF00+n8].

LDH A,[C]
Load value in register A from the byte at address $FF00+c.

Cycles: 2

Bytes: 1

Flags: None affected.

This is sometimes written as LDIO A,[C], or LD A,[$FF00+C].

LD [HLI],A
Store value in register A into the byte pointed by HL and increment HL afterwards.

Cycles: 2

Bytes: 1

Flags: None affected.

This is sometimes written as LD [HL+],A, or LDI [HL],A.

LD [HLD],A
Store value in register A into the byte pointed by HL and decrement HL afterwards.

Cycles: 2

Bytes: 1

Flags: None affected.

GNU                                                                     December 22, 2023                                                                         11



GBZ80(7) Miscellaneous Information Manual GBZ80(7)

This is sometimes written as LD [HL-],A, or LDD [HL],A.

LD A,[HLD]
Load value into register A from the byte pointed by HL and decrement HL afterwards.

Cycles: 2

Bytes: 1

Flags: None affected.

This is sometimes written as LD A,[HL-], or LDD A,[HL].

LD A,[HLI]
Load value into register A from the byte pointed by HL and increment HL afterwards.

Cycles: 2

Bytes: 1

Flags: None affected.

This is sometimes written as LD A,[HL+], or LDI A,[HL].

LD SP,n16
Load value n16 into register SP.

Cycles: 3

Bytes: 3

Flags: None affected.

LD [n16],SP
Store SP & $FF at address n16 and SP >> 8 at address n16 + 1.

Cycles: 5

Bytes: 3

Flags: None affected.

LD HL,SP+e8
Add the signed value e8 to SP and store the result in HL.

Cycles: 3

Bytes: 2

Flags:
Z 0
N 0
H Set if overflow from bit 3.
C Set if overflow from bit 7.

LD SP,HL
Load register HL into register SP.

Cycles: 2

Bytes: 1

Flags: None affected.

NOP
No OPeration.

Cycles: 1

Bytes: 1

GNU                                                                     December 22, 2023                                                                         12



GBZ80(7) Miscellaneous Information Manual GBZ80(7)

Flags: None affected.

OR A,r8
Store into A the bitwise OR of the value in r8 and A.

Cycles: 1

Bytes: 1

Flags:
Z Set if result is 0.
N 0
H 0
C 0

OR A,[HL]
Store into A the bitwise OR of the byte pointed to by HL and A.

Cycles: 2

Bytes: 1

Flags: See “OR A,r8”

OR A,n8
Store into A the bitwise OR of n8 and A.

Cycles: 2

Bytes: 2

Flags: See “OR A,r8”

POP AF
Pop register AF from the stack. This is roughly equivalent to the following imaginary instructions:

ld f, [sp] ; See below for individual flags
inc sp
ld a, [sp]
inc sp

Cycles: 3

Bytes: 1

Flags:
Z Set from bit 7 of the popped low byte.
N Set from bit 6 of the popped low byte.
H Set from bit 5 of the popped low byte.
C Set from bit 4 of the popped low byte.

POP r16
Pop register r16 from the stack. This is roughly equivalent to the following imaginary instructions:

ld LOW(r16), [sp] ; C, E or L
inc sp
ld HIGH(r16), [sp] ; B, D or H
inc sp

Cycles: 3

Bytes: 1

Flags: None affected.

GNU                                                                     December 22, 2023                                                                         13



GBZ80(7) Miscellaneous Information Manual GBZ80(7)

PUSH AF
Push register AF into the stack. This is roughly equivalent to the following imaginary instructions:

dec sp
ld [sp], a
dec sp
ld [sp], flag_Z << 7 | flag_N << 6 | flag_H << 5 | flag_C << 4

Cycles: 4

Bytes: 1

Flags: None affected.

PUSH r16
Push register r16 into the stack. This is roughly equivalent to the following imaginary instructions:

dec sp
ld [sp], HIGH(r16) ; B, D or H
dec sp
ld [sp], LOW(r16) ; C, E or L

Cycles: 4

Bytes: 1

Flags: None affected.

RES u3,r8
Set bit u3 in register r8 to 0. Bit 0 is the rightmost one, bit 7 the leftmost one.

Cycles: 2

Bytes: 2

Flags: None affected.

RES u3,[HL]
Set bit u3 in the byte pointed by HL to 0. Bit 0 is the rightmost one, bit 7 the leftmost one.

Cycles: 4

Bytes: 2

Flags: None affected.

RET
Return from subroutine. This is basically a POP PC (if such an instruction existed). See “POP r16” for an
explanation of how POP works.

Cycles: 4

Bytes: 1

Flags: None affected.

RET cc
Return from subroutine if condition cc is met.

Cycles: 5 taken / 2 untaken

Bytes: 1

Flags: None affected.

RETI
Return from subroutine and enable interrupts. This is basically equivalent to executing “EI” then “RET”,
meaning that IME is set right after this instruction.

GNU                                                                     December 22, 2023                                                                         14



GBZ80(7) Miscellaneous Information Manual GBZ80(7)

Cycles: 4

Bytes: 1

Flags: None affected.

RL r8
Rotate bits in register r8 left, through the carry flag.

ââ Flags ââ ââââââââ r8 âââââââ
ââââ C âââââ b7 â ... â b0 ââââ
â âââââââââââ âââââââââââââââââââ â
âââââââââââââââââââââââââââââââââââ

Cycles: 2

Bytes: 2

Flags:
Z Set if result is 0.
N 0
H 0
C Set according to result.

RL [HL]
Rotate the byte pointed to by HL left, through the carry flag.

ââ Flags ââ âââââââ [HL] ââââââ
ââââ C âââââ b7 â ... â b0 ââââ
â âââââââââââ âââââââââââââââââââ â
âââââââââââââââââââââââââââââââââââ

Cycles: 4

Bytes: 2

Flags: See “RL r8”

RLA
Rotate register A left, through the carry flag.

ââ Flags ââ ââââââââ A ââââââââ
ââââ C âââââ b7 â ... â b0 ââââ
â âââââââââââ âââââââââââââââââââ â
âââââââââââââââââââââââââââââââââââ

Cycles: 1

Bytes: 1

Flags:
Z 0
N 0
H 0
C Set according to result.

RLC r8
Rotate register r8 left.

ââ Flags ââ ââââââââ r8 âââââââ
â C ââââ¬âââ b7 â ... â b0 ââââ
âââââââââââ â âââââââââââââââââââ â

âââââââââââââââââââââââ

GNU                                                                     December 22, 2023                                                                         15



GBZ80(7) Miscellaneous Information Manual GBZ80(7)

Cycles: 2

Bytes: 2

Flags:
Z Set if result is 0.
N 0
H 0
C Set according to result.

RLC [HL]
Rotate the byte pointed to by HL left.

ââ Flags ââ âââââââ [HL] ââââââ
â C ââââ¬âââ b7 â ... â b0 ââââ
âââââââââââ â âââââââââââââââââââ â

âââââââââââââââââââââââ

Cycles: 4

Bytes: 2

Flags: See “RLC r8”

RLCA
Rotate register A left.

ââ Flags ââ ââââââââ A ââââââââ
â C ââââ¬âââ b7 â ... â b0 ââââ
âââââââââââ â âââââââââââââââââââ â

âââââââââââââââââââââââ

Cycles: 1

Bytes: 1

Flags:
Z 0
N 0
H 0
C Set according to result.

RR r8
Rotate register r8 right, through the carry flag.

ââââââââ r8 âââââââ ââ Flags ââ
ââââ b7 â ... â b0 âââââ C ââââ
â âââââââââââââââââââ âââââââââââ â
âââââââââââââââââââââââââââââââââââ

Cycles: 2

Bytes: 2

Flags:
Z Set if result is 0.
N 0
H 0
C Set according to result.

RR [HL]
Rotate the byte pointed to by HL right, through the carry flag.

âââââââ [HL] ââââââ ââ Flags ââ
ââââ b7 â ... â b0 âââââ C ââââ

GNU                                                                     December 22, 2023                                                                         16



GBZ80(7) Miscellaneous Information Manual GBZ80(7)

â âââââââââââââââââââ âââââââââââ â
âââââââââââââââââââââââââââââââââââ

Cycles: 4

Bytes: 2

Flags: See “RR r8”

RRA
Rotate register A right, through the carry flag.

ââââââââ A ââââââââ ââ Flags ââ
ââââ b7 â ... â b0 âââââ C ââââ
â âââââââââââââââââââ âââââââââââ â
âââââââââââââââââââââââââââââââââââ

Cycles: 1

Bytes: 1

Flags:
Z 0
N 0
H 0
C Set according to result.

RRC r8
Rotate register r8 right.

ââââââââ r8 âââââââ ââ Flags ââ
ââââ b7 â ... â b0 ââââ¬âââ C  â
â âââââââââââââââââââ â âââââââââââ
âââââââââââââââââââââââ

Cycles: 2

Bytes: 2

Flags:
Z Set if result is 0.
N 0
H 0
C Set according to result.

RRC [HL]
Rotate the byte pointed to by HL right.

âââââââ [HL] ââââââ ââ Flags ââ
ââââ b7 â ... â b0 ââââ¬âââ C  â
â âââââââââââââââââââ â âââââââââââ
âââââââââââââââââââââââ

Cycles: 4

Bytes: 2

Flags: See “RRC r8”

RRCA
Rotate register A right.

ââââââââ A ââââââââ ââ Flags ââ
ââââ b7 â ... â b0 ââââ¬âââ C  â
â âââââââââââââââââââ â âââââââââââ
âââââââââââââââââââââââ

GNU                                                                     December 22, 2023                                                                         17



GBZ80(7) Miscellaneous Information Manual GBZ80(7)

Cycles: 1

Bytes: 1

Flags:
Z 0
N 0
H 0
C Set according to result.

RST vec
Call address vec. This is a shorter and faster equivalent to “CALL” for suitable values of vec.

Cycles: 4

Bytes: 1

Flags: None affected.

SBC A,r8
Subtract the value in r8 and the carry flag from A.

Cycles: 1

Bytes: 1

Flags:
Z Set if result is 0.
N 1
H Set if borrow from bit 4.
C Set if borrow (i.e. if (r8 + carry) > A).

SBC A,[HL]
Subtract the byte pointed to by HL and the carry flag from A.

Cycles: 2

Bytes: 1

Flags: See “SBC A,r8”

SBC A,n8
Subtract the value n8 and the carry flag from A.

Cycles: 2

Bytes: 2

Flags: See “SBC A,r8”

SCF
Set Carry Flag.

Cycles: 1

Bytes: 1

Flags:
N 0
H 0
C 1

SET u3,r8
Set bit u3 in register r8 to 1. Bit 0 is the rightmost one, bit 7 the leftmost one.

Cycles: 2

Bytes: 2

GNU                                                                     December 22, 2023                                                                         18



GBZ80(7) Miscellaneous Information Manual GBZ80(7)

Flags: None affected.

SET u3,[HL]
Set bit u3 in the byte pointed by HL to 1. Bit 0 is the rightmost one, bit 7 the leftmost one.

Cycles: 4

Bytes: 2

Flags: None affected.

SLA r8
Shift Left Arithmetically register r8.

ââ Flags ââ ââââââââ r8 âââââââ
â C âââââ b7 â ... â b0 âââ 0
âââââââââââ âââââââââââââââââââ

Cycles: 2

Bytes: 2

Flags:
Z Set if result is 0.
N 0
H 0
C Set according to result.

SLA [HL]
Shift Left Arithmetically the byte pointed to by HL.

ââ Flags ââ âââââââ [HL] ââââââ
â C âââââ b7 â ... â b0 âââ 0
âââââââââââ âââââââââââââââââââ

Cycles: 4

Bytes: 2

Flags: See “SLA r8”

SRA r8
Shift Right Arithmetically register r8 (bit 7 of r8 is unchanged).

âââââââ r8 âââââââ ââ Flags ââ
â b7 â ... â b0 âââââ C  â
ââââââââââââââââââ âââââââââââ

Cycles: 2

Bytes: 2

Flags:
Z Set if result is 0.
N 0
H 0
C Set according to result.

SRA [HL]
Shift Right Arithmetically the byte pointed to by HL (bit 7 of the byte pointed to by HL is unchanged).

ââââââ [HL] ââââââ ââ Flags ââ
â b7 â ... â b0 âââââ C  â
ââââââââââââââââââ âââââââââââ

GNU                                                                     December 22, 2023                                                                         19



GBZ80(7) Miscellaneous Information Manual GBZ80(7)

Cycles: 4

Bytes: 2

Flags: See “SRA r8”

SRL r8
Shift Right Logically register r8.

ââââââââ r8 âââââââ ââ Flags ââ
0 âââ b7 â ... â b0 âââââ   C    â

âââââââââââââââââââ âââââââââââ

Cycles: 2

Bytes: 2

Flags:
Z Set if result is 0.
N 0
H 0
C Set according to result.

SRL [HL]
Shift Right Logically the byte pointed to by HL.

âââââââ [HL] ââââââ ââ Flags ââ
0 âââ b7 â ... â b0 âââââ   C    â

âââââââââââââââââââ âââââââââââ

Cycles: 4

Bytes: 2

Flags: See “SRL r8”

STOP
Enter CPU very low power mode. Also used to switch between double and normal speed CPU modes in
GBC.

Cycles: -

Bytes: 2

Flags: None affected.

SUB A,r8
Subtract the value in r8 from A.

Cycles: 1

Bytes: 1

Flags:
Z Set if result is 0.
N 1
H Set if borrow from bit 4.
C Set if borrow (set if r8 > A).

SUB A,[HL]
Subtract the byte pointed to by HL from A.

Cycles: 2

Bytes: 1

Flags: See “SUB A,r8”

GNU                                                                     December 22, 2023                                                                         20



GBZ80(7) Miscellaneous Information Manual GBZ80(7)

SUB A,n8
Subtract the value n8 from A.

Cycles: 2

Bytes: 2

Flags: See “SUB A,r8”

SWAP r8
Swap the upper 4 bits in register r8 and the lower 4 ones.

Cycles: 2

Bytes: 2

Flags:
Z Set if result is 0.
N 0
H 0
C 0

SWAP [HL]
Swap the upper 4 bits in the byte pointed by HL and the lower 4 ones.

Cycles: 4

Bytes: 2

Flags: See “SWAP r8”

XOR A,r8
Bitwise XOR between the value in r8 and A.

Cycles: 1

Bytes: 1

Flags:
Z Set if result is 0.
N 0
H 0
C 0

XOR A,[HL]
Bitwise XOR between the byte pointed to by HL and A.

Cycles: 2

Bytes: 1

Flags: See “XOR A,r8”

XOR A,n8
Bitwise XOR between the value in n8 and A.

Cycles: 2

Bytes: 2

Flags: See “XOR A,r8”

SEE ALSO
rgbasm(1), rgblink(1), rgbfix(1), rgbgfx(1), rgbds(7)

HISTORY
rgbasm(1) was originally written by Carsten Sørensen as part of the ASMotor package, and was later
repackaged in RGBDS by Justin Lloyd. It is now maintained by a number of contributors at
https://github.com/gbdev/rgbds.

GNU                                                                     December 22, 2023                                                                         21


	GBZ80(7)
	Name
	Description
	Legend
	Instruction overview
	8-bit Arithmetic and Logic Instructions
	16-bit Arithmetic Instructions
	Bit Operations Instructions
	Bit Shift Instructions
	Load Instructions
	Jumps and Subroutines
	Stack Operations Instructions
	Miscellaneous Instructions

	Instruction reference
	ADC A,r8
	ADC A, [ HL ] 
	ADC A,n8
	ADD A,r8
	ADD A, [ HL ] 
	ADD A,n8
	ADD HL,r16
	ADD HL,SP
	ADD SP,e8
	AND A,r8
	AND A, [ HL ] 
	AND A,n8
	BIT u3,r8
	BIT u3, [ HL ] 
	CALL n16
	CALL cc,n16
	CCF
	CP A,r8
	CP A, [ HL ] 
	CP A,n8
	CPL
	DAA
	DEC r8
	DEC [ HL ] 
	DEC r16
	DEC SP
	DI
	EI
	HALT
	INC r8
	INC [ HL ] 
	INC r16
	INC SP
	JP n16
	JP cc,n16
	JP HL
	JR n16
	JR cc,n16
	LD r8,r8
	LD r8,n8
	LD r16,n16
	LD [ HL ] ,r8
	LD [ HL ] ,n8
	LD r8, [ HL ] 
	LD [ r16 ] ,A
	LD [ n16 ] ,A
	LDH [ n16 ] ,A
	LDH [ C ] ,A
	LD A, [ r16 ] 
	LD A, [ n16 ] 
	LDH A, [ n16 ] 
	LDH A, [ C ] 
	LD [ HLI ] ,A
	LD [ HLD ] ,A
	LD A, [ HLD ] 
	LD A, [ HLI ] 
	LD SP,n16
	LD [ n16 ] ,SP
	LD HL,SP+e8
	LD SP,HL
	NOP
	OR A,r8
	OR A, [ HL ] 
	OR A,n8
	POP AF
	POP r16
	PUSH AF
	PUSH r16
	RES u3,r8
	RES u3, [ HL ] 
	RET
	RET cc
	RETI
	RL r8
	RL [ HL ] 
	RLA
	RLC r8
	RLC [ HL ] 
	RLCA
	RR r8
	RR [ HL ] 
	RRA
	RRC r8
	RRC [ HL ] 
	RRCA
	RST vec
	SBC A,r8
	SBC A, [ HL ] 
	SBC A,n8
	SCF
	SET u3,r8
	SET u3, [ HL ] 
	SLA r8
	SLA [ HL ] 
	SRA r8
	SRA [ HL ] 
	SRL r8
	SRL [ HL ] 
	STOP
	SUB A,r8
	SUB A, [ HL ] 
	SUB A,n8
	SWAP r8
	SWAP [ HL ] 
	XOR A,r8
	XOR A, [ HL ] 
	XOR A,n8

	See also
	History


